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Fluids of rodlike particles near curved surfaces

B. Groh1 and S. Dietrich2
1FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

2Fachbereich Physik, Bergische Universita¨t Wuppertal, D-42097 Wuppertal, Germany
~Received 30 October 1998!

We study fluids of hard rods in the vicinity of hard spherical and cylindrical surfaces at densities below the
isotropic-nematic transition. The Onsager second virial approximation is applied, which is known to yield
exact results for the bulk properties in the limit of infinitely thin rods. This approach requires the computation
of the one-particle distribution function and of the Mayer function, which is greatly facilitated by an appro-
priate expansion in terms of spherical harmonics. We determine density and orientational profiles as well as the
surface tensiong as a function of the surface curvature radiusR. Already in the low-density limit of nonin-
teracting rodsg(R) turns out to be nonanalytic at 1/R50, which prohibits the application of the commonly
used Helfrich expansion. The interparticle interaction modifies the behavior ofg(R) as compared to the
low-density limit quantitatively and qualitatively.@S1063-651X~99!12503-0#

PACS number~s!: 68.45.2v, 61.30.Gd, 68.10.Cr, 82.70.Dd
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I. INTRODUCTION

A fluid of hard rods can be considered as the simp
model for nematic liquid crystals consisting of elongat
molecules. In a seminal paper in 1949, Onsager showed@1#
that the steric hard-body interactions alone can bring ab
an isotropic-nematic transition. Although the steric intera
tions already capture many of the essential features of liq
crystals, their actual behavior is complicated by the prese
of dispersion forces, flexibility, dipole moments, etc. But f
certain colloidal systems of rodlike particles of synthetic
biological origin dissolved in a suitable solvent, the hard r
model provides a quantitatively reliable effective descript
@2#. Among them, the ones that are studied in most detail
the tabac mosaic virus and the fd-virus with length~L! to
diameter~D! ratios L/D of about 17 and 150, respective
@2#. From a theoretical point of view the limit of infinitely
thin hard rods is especially interesting because it repres
one of the very few cases for which the exact density fu
tional is known@1#.

Even more than in simple liquids, which are composed
spherically symmetric particles, surface effects are of gr
importance for liquid crystals. In the absence of exter
fields, the orientation of the bulk fluid is determined by
interaction with the container walls; this phenomenon
called anchoring@3#. For the simplest case of a hard rod flu
near a planar hard wall, as studied theoretically by Hoł
and Poniewierski@4–6#, the wall induces parallel alignmen
of the nematic director. An isotropic-nematic interface a
aligns the nematic phase parallel to the interface for la
aspect ratiosL/D while a nontrivial tilt angle arises for lowe
aspect ratios@7#. In view of the substantial technical difficul
ties which are associated with the theoretical description o
truly microscopic scale, especially for curved surfaces, it
natural first step to analyze the interface between theisotro-
pic phase and a hard wall. The corresponding density
orientational order profiles near aplanar wall have been de-
termined by Poniewierski@8# in the framework of the On-
sager theory, who also found indications for spontaneous
PRE 591063-651X/99/59~4!/4216~13!/$15.00
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axial order at the surface already below the bulk transition
the nematic phase. Maoet al. have compared this theor
with computer simulations for finite aspect ratiosL/D @9#
and have calculated the depletion force between planar w
or large spheres immersed in a solution of rods@10,11#, us-
ing the Derjaguin approximation.

In the present work we focus on the orientational a
positional order as well as the surface tension nearcurved
hard walls, taking into account the steric interactions b
tween the rods. The curvature has an appreciable effec
the structure and the thermodynamics of the fluid if the
dius of curvatureR is of the order of the particle lengthL.
Accordingly as possible applications one can think of t
following systems:~i! rodlike particles confined to the inte
rior of small pores within porous materials;~ii ! colloidal sus-
pensions of rods that contain a second, diluted, componen
larger, e.g., spherical particles;~iii ! membranes, especiall
vesicles, immersed in colloidal rod solutions, resemblin
e.g., solutions of viruses. The curvature-dependent sur
tension and the depletion forces in case~ii ! have been deter
mined by Auvray@12# and Yamanet al. @13,14# for fluids of
noninteracting rods corresponding to the limit of infinite d
lution. Their most surprising result was that the surface f
energy does not contain a term linear in the curvatureR
and that the quadratic term has different amplitudes for
ferent signs of the curvature. This nonanalyticity prohib
the application of the common Helfrich expansion. Thus
case~iii ! above the effect of the rods on the elastic propert
of the membranes cannot be described by a renormaliza
of the bending rigidities as it is possible for membranes
posed to a suspension of spherical colloidal particles@13# or
polymers @15#. In order to be able to assess the range
validity of the results obtained in the ideal limit of noninte
acting rods, in the present paper we tackle the full probl
including the interparticle interactions by employing the O
sager density-functional theory~Sec. II!, which yields den-
sity profiles~Sec. III! and the surface tension~Sec. IV!. Our
main results are summarized in Sec. V while technical
tails are presented in Appendixes A and B.
4216 ©1999 The American Physical Society
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II. MODEL AND DENSITY-FUNCTIONAL THEORY

Based on density-functional theory we study a fluid
hard spherocylinders of lengthL and diameterD in the vi-
cinity of a hard spherical or cylindrical surface of radiusR
~see Fig. 1!. In order to keep the numerical difficulties tra
table, we restrict ourselves to the limitD/L→0 with R/L
fixed. The number density of the centers of mass of th
thin rods at a pointr with orientationv85(u8,f8) is de-
noted byr̂(r ,v8). The corresponding grand-canonical fun
tional is given by

bV@$r̂~r ,v8!%#

5E d3rdv8r̂~r ,v8!@ ln„4pl3r̂~r ,v8!…212bm

1bV~r ,v8!#1bFex@$r̂~r ,v8!%#. ~1!

HerekBb51/T is the inverse temperature,m is the chemical
potential, V(r ,v8) is the external potential exerted by th
hard wall, andl is the thermal de Broglie wavelength
Within the Onsager second virial approximation the exc
free energyFex is @1#

bFex@$r̂~r ,v8!%#52
1

2E d3r 1dv18d
3r 2dv28r̂~r1 ,v18!

3 r̂~r2 ,v28! f ~r12,v18 ,v28! ~2!

FIG. 1. The system under consideration consists of a fluid
monodisperse hard spherocylinders of diameterD and lengthL in
contact with a spherical or cylindrical hard wall of radiusR. We
assume that the orientational distribution only depends on the
mal distancez and, for a spherical wall, the angleu of the particle
axis with respect to the surface normal. During the evaluation of
excess free energy, the particle orientations are described in
different reference frames: the framex8y8z8 fixed in space, the
framexyz fixed by the local normal direction, and the interpartic

frame x̂ŷẑ. The rotation between the latter two is described by
Euler anglesc i ,h i , andx i @see Eq.~8!#. The different sizes of the
spherocylinders indicate that the particles typically do not lie in
x8y8 plane and thus only their projection onto that plane is sho

For reasons of clarity only the polar anglesu8, u, andû are shown,

but not the corresponding azimuthal anglesf8, f, andf̂.
f

e

s

with the interparticle vectorr125r22r1 and the Mayer func-
tion f (r12,v18 ,v28), which for hard particles equals21 if the
two particles overlap and zero otherwise. Onsager dem
strated that this approximation becomesexact in the limit
D/L→0 for the bulk properties@1#, and this is expected to
hold also for surface quantities@8,11#. For a planar surface
this approach has turned out to be quantitatively reliable
D/L&0.1 @11#.

As mentioned in the Introduction, the corresponding pro
lem with noninteracting particles, i.e., in the presence of
hard wall interaction but withFex50, has been analyzed b
Yaman et al. @13,14#. Taking into account the interparticl
interaction increases the complexity considerably due to
ensuing nonlocality and the high dimensional integration
Eq. ~2!. In the remaining part of this section we evaluate t
expression forFex by exploiting the symmetries of the den
sity profile r̂(r ,v) using appropriate expansions in terms
spherical harmonics. In Sec. III the thermodynamica
stable equilibrium profile is obtained by minimization of th
density functional, which amounts to solving an integ
equation. The value of the functional at this minimum is t
grand-canonical potential of the inhomogeneous fluid fr
which the surface tension at the curved walls is determi
in Sec. IV.

The particle orientation is conveniently described in a
cal reference frame whose polar axis is that wall norm
which runs through the rod center and whosey axis, in the
case of a cylindrical wall, is aligned with the cylinder ax
~see Fig. 1!. Since we are interested in bulk densitiesrb
below the isotropic-nematic transition, i.e., rb
,4.2(DL2)21 @1#, we may assume that the number dens
r(r )5*dv8r̂(r ,v8) as well as the orientational distributio
measured in the local reference system@denoted byv
5(u,f)# depend only on the radial coordinater in a spheri-
cal or cylindrical coordinate system, which allows us
make the following ansatz:

r̂S~r ,v!5
rb

2p(
l 50

`

a l~r !Pl~cosu! ~3!

and

r̂C~r ,v!5rb(
l 50

`

(
m52 l

l

m lm~r !Ylm~v! ~4!

for a sphere~S! and a cylinder (C), respectively. The func-
tions Pl and Ylm are Legendre polynomials and spheric
harmonics, respectively. For large distances from the w
the fluid is isotropic@ r̂(r ,v)5rb/4p#, so thata l(r→`)
5 1

2 d l ,0 and m lm(r→`)5(4p)21/2d lm,00. At a sphere the
density does not depend on the azimuthal anglef. At a
cylinder the symmetries

r̂~r ,u,f!5 r̂~r ,p2u,f!5 r̂~r ,u,2f!5 r̂~r ,u,p2f!
~5!

imply that m lm50 if l or m is odd andm lm5m lm̄5m lm* for l

andm even~here and in the followingm̄52m).
The coordinatesv can be expressed in terms of the coo

dinatesv8 corresponding to a frame fixed in space by

f

r-

e
ee

e

e
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4218 PRE 59B. GROH AND S. DIETRICH
~position-dependent! rotation. Therefore the angular integr
tions in Eqs.~1! and~2! can be taken also overv. However,
the Mayer function is naturally expressed within a third c
ordinate systemv̂ given by the interparticle vectorr12. In
order to perform the angular integrations in the following w
will determine the transformation fromv̂ to v. The defini-
tion of the different reference frames is illustrated in Fig.

For any uniaxial molecule the Mayer function can be e
panded as@16#

f ~r 12,v̂1 ,v̂2!5 (
l 1 ,l 2 ,m

f l 1l 2m~r 12!Yl 1m~v̂1!Yl 2m̄~v̂2!.

~6!

The solid anglesv̂ i refer to a particle fixed reference syste
~see Fig. 1! with its z axis parallel to the interparticle vecto
r12 ~and arbitraryx axis!. The determination of the expansio
coefficients

f l 1l 2m~r 12!5E dv̂1dv̂2f ~r 12,v1250,v̂1 ,v̂2!

3Yl 1m* ~v̂1!Yl 2m̄
* ~v̂2! ~7!

is discussed in Appendix A. Spherical harmonics in differe
reference systems are related via the rotation matricesDnm

l

@16#:

Ylm~v i !5(
n

Dnm
l ~c i ,h i ,x i !Yln~v̂ i !, i 51,2, ~8!

where the Euler anglesc i(r1 ,r2),h i(r1 ,r2), and x i(r1 ,r2)
describe the rotation of the particle based axes (v̂ i) onto the
surface normal based axes (v i) ~for the definition of the
Euler angles see, e.g., Fig. A.6 in Ref.@16#!. Inserting Eqs.
~3!, ~6!, and~8! into Eq. ~2! yields for the spherical case

bFex
S 52

rb
2

2p (
l 1 ,l 2 ,m

@~2l 111!~2l 211!#21/2

3E d3r 1d3r 2 a l 1
~r 1!a l 2

~r 2! f l 1l 2m~r 12!

3Dm0
l 1* ~c1 ,h1 ,x1!D

m̄0

l 1* ~c2 ,h2 ,x2!. ~9!

One still has the freedom to fix the orientation of they axes
in the different reference systems. If one chooses them t
all parallel to each other and perpendicular to the pla
spanned byr1 and r2 , the transformations described by th
Euler angles become simple rotations around they axis so
that c i5x i50. With @16#

Dm0
l* ~0,h,0!5A 4p

2l 11
Ylm~h,0! ~10!

one finds for a system of radial sizeL, outside of a spherica
cavity of radiusR,
-

.
-

t

be
e

bFex
S 52~4prb!2 (

l 1 ,l 2 ,m
@~2l 111!~2l 211!#21

3E
R

R1L
dr1r 1

2E
R

R1L
dr2r 2

2a l 1
~r 1!a l 2

~r 2!

3E
21

1

d cosg f l 1l 2m~r 12!Yl 1m~h1,0!Yl 2m̄~h2,0!.

~11!

The anglesg,h1 , andh2 are those between the vectorsr1
and r2 , r1 and r12, and r2 and r12, respectively, andr 12

5(r 1
21r 2

222r 1r 2 cosg)1/2. If we user 12 instead of cosg as
an integration variable, we finally obtain

bFex
S 5

1

2
rb

2 (
l 1 ,l 2

E
R

R1L
dr1r 1E

R

R1L
dr2r 2

3a l 1
~r 1!a l 2

~r 2!wl 1l 2
~r 1 ,r 2! ~12!

with

wl 1l 2
~r 1 ,r 2!52

32p2

~2l 111!~2l 211!

3(
m

E
ur 12r 2u

r 11r 2
dr12r 12f l 1l 2m~r 12!

3Yl 1m~h1,0!Yl 2m̄~h2,0! ~13!

and

cosh15
r 2

22r 1
22r 12

2

2r 1r 12
, cosh25

r 2
22r 1

21r 12
2

2r 2r 12
. ~14!

An equivalent expression for aplanar wall with surface
areaA can be derived along the same lines. In this case
Euler angles are the same for both particles because th
rection of the surface normal is the same everywhere. Ag
one can choosec i5x i50 and finds

bFex
P /A5

1

2
rb

2 (
l 1 ,l 2

E
0

L
dz1E

0

L
dz2a l 1

~z1!

3a l 2
~z2!wl 1l 2

P ~z12z2!, ~15!

where the interaction kernelwl 1l 2
P now depends only on one

variable:

wl 1l 2
P ~z12!52

8p

~2l 111!~2l 211!(m E
uz12u

`

dr12r 12

3 f l 1l 2m~r 12!Yl 1m~h,0!Yl 2m̄~h,0! ~16!

with h5arccos(z12/r 12). It can be shown thatwl 1l 2
(R

1z1 ,R1z2)54pwl 1l 2
P (z12z2)1O(1/R) for z1 ,z2!R.

The cylindrical case is considerably complicated by t
lower symmetry ofr̂(r ,v). Using Eqs.~2!, ~4!, and~8! and
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performing the integrations overv1 , v2 , as well asz1 and
f̃1 , where r i5(r i ,zi ,f̃ i), i 51,2, in cylindrical coordi-
nates, one obtains

bFex
C /H5

1

2
rb

2E
R

R1L
dr1r 1E

R

R1L
dr2r 2

3 (
l 1 ,l 2 ,m1 ,m2

m l 1m1
~r 1!m l 2m2

~r 2!wl 1m1l 2m2
~r 1 ,r 2!

~17!

with

wl 1m1l 2m2
~r 1 ,r 2!522p(

m
E

2`

`

dz12E
0

2p

df̃12f l 1l 2m~r 12!

3Dmm1

l 1* ~c1 ,h1 ,x1!D
m̄m2

l 2* ~c2 ,h2 ,x2!.

~18!

Here H is the macroscopic height of the cylinder an
z12 5 z2 2 z1 , f̃12 5 f̃2 2 f̃1 , r 12 5 (r 1

2 1 r 2
2 1 z12

2

22r 1r 2 cosf̃12)
1/2. In a rather lengthy calculation the de

pendence of the Euler angles onr 1 ,r 2 ,z12, and f̃12 can be
worked out by decomposing the rotations that connect
different reference systems into three successive simple
tations around~intermediate! coordinate axes~see Appendix
A2 in Ref. @16#!. It is helpful to user 12 andu5r 12

2 2z12
2 as

the integration variables which leads to

wl 1m1l 2m2
~r 1 ,r 2!5216p(

m
E

ur 12r 2u

`

dr12r 12f l 1l 2m~r 12!

3E
~r 12r 2!2

r 12
2

du$~r 12
2 2u!@~r 11r 2!22u#

3@u2~r 12r 2!2#%21/2

3cos@m~c12c2!1m1x11m2x2#

3dmm1

l 1 ~h1!d
m̄m2

l 2 ~h2!. ~19!

Here the rotation matrices have been written as@16#

Dmn
l ~c,h,x!5e2 imcdmn

l ~h!e2 inx, ~20!

where the functionsdmn
l can be calculated by using Eq

~A.65! in Ref. @16#. The advantage of Eq.~19! is that the
inner integral can be evaluated without the time-consum
calculation off l 1l 2m . In these variables the Euler angles a

cosh15
r 2

22r 1
22u

2r 12r 1
, cosh25

r 2
22r 1

21u

2r 12r 2
, ~21!

tanc152r 1D cosh1 , tanc252r 2D cosh2 , ~22!

tanx1522r 1D, tanx2522r 2D, ~23!

with
e
o-

g

D5S r 12
2 2u

@~r 11r 2!22u#@u2~r 12r 2!2#
D 1/2

. ~24!

For the inside of a sphere~cylinder! the integration range
for the radial integrals in Eq.~12! @Eq. ~17!# has to be re-
placed by@0,R#.

III. DENSITY PROFILES

The equilibrium density profile minimizes the gran
canonical functional, i.e., it is a solution ofdV/dr̂(r ,v)
50 under the boundary conditionr̂(r ,v)→rb/4p for r
→`. By using the relation

da l~r 8!

dr̂~r ,v!
5

2l 11

2rb
d~r 2r 8!Pl~cosu! ~25!

and exploiting the symmetry propertywl 1l 2
(r 1 ,r 2)

5wl 2l 1
(r 2 ,r 1) one finds for the spherical wall the Eule

Lagrange equation

4pl3r̂~r ,u!5expFbm2bV~r ,u!

2
rb

4pr (
l 1 ,l 2

2l 111

2
Pl 1

~cosu!

3E dr8r 8a l 2
~r 8!wl 1l 2

~r ,r 8!G . ~26!

With r̂0(r ,u)5(4pl3)21 exp@bm2V(r,u)# as the corre-
sponding profile for noninteracting rods at the same chem
potential one finds that

r̃~r ,u!ª r̂~r ,u!/ r̂0~r ,u!5:(
l

b l~r !Pl~cosu! ~27!

satisfies

r̃~r ,u!5expF2(
l

Pl~cosu!pl~r !G ~28!

with

pl~r !5
rb

4pr

2l 11

2 (
l 8

E dr8r 8a l 8~r 8!wll 8~r ,r 8!.

~29!

@Strictly speakingr̃ cannot be defined by Eq.~27! for the
forbidden orientations, for which bothr̂0 and r̂ vanish. In-
stead wedefineit by Eqs.~28! and ~29! in this region.# The
function r̂0(r ,u) equalsr0/4p for orientations that are al
lowed by the hard wall and zero otherwise. The densityr0
corresponding to the chemical potentialm follows from the
bulk limit of the density functional. For an isotropic fluid i
a volumeV one has

bV/V5bvb5rbS ln l3rb212bm1
1

2
rb

2v0D ~30!
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4220 PRE 59B. GROH AND S. DIETRICH
with

v052
1

~4p!2E d3r 12dv1dv2f ~r12,v1 ,v2!5
p

2
DL2.

~31!

The same equation without the last term holds for the id
gas limit. Minimization yieldsr05rb exp(rbv0). The al-
lowed values ofu for given r andR are determined in Ap-
pendix B. Thus based on the known functionr̂0(r ,x
5cosu) the coefficientsa l in Eq. ~29! can be expressed i
terms of the coefficientsb l introduced in Eq.~27!:

a l~r !5
2l 11

2

2p

rb
(
l 8

b l 8~r !E
21

1

dxPl~x!Pl 8~x!r̂0~r ,x!,

~32!

where the integration overx can be carried out analyticall
for given l and l 8. This allows one to calculate the coeffi
cientsb l by solving iteratively the following system of equa
tions together with Eqs.~29! and ~32!:

b l~r !5
2l 11

2 E dxPl~x!expF2(
l 8

Pl 8~x!pl 8~r !G .

~33!

The advantage of first seeking the solution forr̃ instead ofr̂
is that the former function is smoother near the transit
from allowed to forbidden orientations and hence can be
ter approximated with a limited number of Legendre polyn
mials.

The cylindrical case can be treated completely ana
gously. With the expansionr̃(r ,v)5( lmn lm(r )Ylm(v) one
obtains

n lm~r !5E dvYlm* ~v!expF2 (
l 8,m8

Yl 8m8
* ~v!pl 8m8~r !G

~34!

with

plm~r !5
rb

2p (
l 8,m8

E dr8r 8m l 8m8~r 8!wlml8m8~r ,r 8!

~35!

and

m lm~r !5
1

rb
(

l 8,m8
n l 8m8~r !E dvYlm* ~v!Yl 8m8~v!r̂0~r ,v!.

~36!

These equations are valid both for the outside and the in
of the sphere or cylinder if ther 8 integrations are taken ove
the interval@R,`) or @0,R#, respectively. But we note tha
the functionsr̂0 have completely different forms in thes
two cases~see Appendix B!. It is assumed that the fluid
inside a spherical or cylindrical cavity is in equilibrium wit
a particle reservoir at the chemical potentialm corresponding
to the bulk densityrb , which is kept fixed whenR is varied.
For small radii the actual density at the center of the cav
al

n
t-
-

-

de

y

may differ fromrb although this effect is certainly numer
cally negligible in the examined range of radiiuRu>3.

In practice we have truncated alll sums atl max510@ l max
58# for spheres~cylinders! and the radial integrals were cu
off at a distanceL52L (L51.5L) from the wall. Beyond
this distance the profile was assumed to take on its b
value and corresponding asymptotic corrections were ad
to pl (plm) in the vicinity of the cutoff. A step size ofDr
50.02L(Dr 50.031 25L) was used for all functions ofr.
First the values ofwl 1l 2

(r 1 ,r 2)@wl 1m1l 2m2
(r 1 ,r 2)# were cal-

culated and stored for all necessary values ofr 1 and r 2 and
of the indices. This step required by far the largest fraction
the computer time. Thereafter for a series of bulk densi
rb the coefficientsb l(n lm) were determined by a simple P
card iteration scheme with retardation.

In the following a negative~positive! radius R signifies
that the wall curves towards~away from! the fluid, andz is
the distance from the surface. As reduced density we emp
r* 5rDL2; in these units the isotropic-nematic transitio
takes place atrb* .4.2 @1#, which provides an upper limit for
the present approach because in the nematic phase the o
tational structure does not exhibit the symmetries assum
here. A typical density profiler̂(z,cosu) outside of a sphere
is shown in Fig. 2. Forz,L/2 orientations with large cosu
are forbidden so that the profile has a discontinuity along
line cosu5xmax(z) determined in Appendix B. When th
rods do not interact among each other, i.e., forrb→0, all
allowed orientations have the same probability. The prese
of the steric interaction induces astrong increase of the den
sity close to the surface, while there is only a weak dep
dence on cosu within the allowed region. Orientations nea
the discontinuity, where one end of the rod touches the w
are slightly favored. Note that no packing effects are visib
These will occur on the much smaller length scaleD and
presumably only at much higher densities where the pack

FIG. 2. Full density profiler̂* (z,cosu)5r̂(z,cosu)DL2 outside a
sphere of radiusR/L53 for the bulk densityrb* 5rbDL252. At
small distancesz from the wall, large values of cosu are forbidden
due to overlap. Therefore the profile is exactly zero behind t
‘‘step.’’ In the allowed region the most prominent feature induc
by the interaction between the rods is the strong increase of
density at small distancesz. For fixed z, orientations close to the
step, i.e., those with one end of the rod touching the wall,
favored. If the interparticle interactions were neglected the pro
would be constant in the whole accessible region.
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fraction F;rD2L is of order unity. The profiles for othe
radii, even for the opposite sign of the curvature, look ess
tially the same. In the latter case there is a very small reg
close to the surface that is not accessible to any rod ce
For a cylindrical wall the profiles also depend on the a
muthal angle, but except very close to surfaces with nega
curvatures this dependence is very weak and a plot
r̂C(z,cosu,f) for any fixedf looks very similar to Fig. 2.

The normalized orientationally averaged number den
is defined by

n~z!5E dvr̂~z,v!/rb . ~37!

This function increases for smallz up to z5L/2, where it
exhibits a cusp and then rapidly decreases to its bulk lim
which is essentially reached already atz5L. As shown in
Fig. 3 within the examined range of curvatures (uRu/L*3),
it depends only slightly onR. If 1/R is decreased,n(z) be-
comes smaller forz/L&0.27 and larger forz/L*0.27. The
results for the cylinder lie between those for the planar w
(R5`) and for a sphere with the same radius. Due to
finite step sizeDr and the steepness ofr̂(z,v), the raw data
for n(z) exhibit visible kinks atz5nDr for small integersn.
These have been removed from Fig. 3 by fitting of an app
priate smooth function to the data.

We define position-dependent orientational order para
eters as

Qlm~z!5
1

rbn~z!
E dvYlm* ~v!r̂~z,v!. ~38!

FIG. 3. Normalized orientationally averaged densityn(z) for
fluids in contact with planar, cylindrical, and spherical walls
positive and negative curvature for a fixed bulk densityrb* 52. The
inset shows the behavior in the vicinity of the cusp which occur
z5L/2 and is followed by a rapid decay towards the bulk lim
n(z)51. All curves have about the same value atz/L.0.27 but
they do not intersect exactly at one point. For better visibility on
two curves are shown in the main part of the figure. The remain
profiles lie in between these two. Close to the wall the num
density is larger for positive curvature. Inside a sphere,n(z)50 for
very smallz because the centers of the rods cannot come arbitra
close to the wall. Small kinks in the smallz range that are caused b
the numerical discretization were removed by fitting a smooth cu
to the raw data.
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For the sphere due to the azimuthal symmetry one hasQlm
50 for mÞ0. The lowest nontrivial order parameterQ20(z)
is plotted in Figs. 4 and 5. Asr̂(z,v)/@rbn(z)#.1 for z
→0 and in this limit onlyu5p/2 is allowed, it follows that
Q20(z→0)52A5/8p520.3154. Negative values ofQ20
indicate that the rods are preferentially aligned parallel to
surface, which is of course enforced by the wall. The int
particle interactions tend to align the rods also forz.L/2,
where they cannot directly touch the wall, and increase
alignment forz,L/2 ~see Fig. 4!. The alignment is stronge
for positive than for negative curvature~see Fig. 5!.

The biaxiality of the orientational distribution at a cylin
der is measured byQ22(z). Positive~negative! values corre-
spond to a preferential orientation perpendicular~parallel! to
the cylinder axis. If the orientational distribution is sharp
peaked atu5p/2 andf50 ~or f5p/2), Q22 takes on its
maximum ~minimum! value Q2256A15/32p560.3863.
The results for cylinders of radiusR/L565 are displayed in
Fig. 6. As expected, particlesinsidea cylinder orient them-
selves mainly parallel to the cylinder axis, the more t
stronger the interactions are. With increasing bulk dens

t

g
r

ly

e

FIG. 4. Uniaxial nematic order parameterQ20 as defined in Eq.
~38! for a fluid outside a sphere of radiusR/L55 for different
densities. The tendency for parallel orientations, as indicated
negative values ofQ20, becomes more pronounced and long
ranged with increasing density.Q20(z50)520.3154.

FIG. 5. Order parameterQ20 at fixed densityrb* 52 for different
wall geometries. Parallel orientations, i.e., negative values ofQ20

are more favored by negative curvatures.
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the decay ofQ22 towards the bulk value 0 becomes signi
cantly slower, which probably signals the onset of the f
mation of a nematic wetting layer upon approaching
isotropic-nematic transition. This interpetration is suppor
by the fact that the iterations did not converge forrb* *3.5.
For this density range spontaneous biaxial orientational o
has also been predicted at aplanar surface@8#. For positive
curvature,Q22 has the opposite sign and a much lower ab
lute value. The limitz→0 for Q22 cannot be determined
rigorously in this case because the allowed region inv space
does not reduce to a single point so thatQ22(z→0) still
depends on an unknown function off. Only in the ideal case
rb→0 is this function constant so thatQ22(z→0)
5A5/96p50.1288. Here, the effect of the interactions is
increase the probability for orientations parallel to the axis
that Q22 may even become negative.

IV. SURFACE TENSION

The curvature-dependent surface tensiong(R) is that con-
tribution to the grand-canonical potential which scales w
the surface area of the confining wall. In order to determ
this quantity for positive curvature, one has to consider s
tems of finite sizeL in the radial direction. However, suc
systems necessarily contain a second, isotropic liqu
vacuum interface generated by the cutoff yielding the co
sponding artificial surface contributiongvac. Hence for a
sphere we have

4pR2gS~R!5 lim
L→`

FV~R,L!2
4p

3
@~R1L!32R3#vb

24p~R1L!2gvac
S ~R1L!G , ~39!

where vb52p ~see Eq.~30!! is the bulk grand-canonica
potential density andp is the bulk pressure.

The vacuum surface tension can be obtained separate
considering the one-surface problem of a sphere of ra

FIG. 6. Biaxial order parameterQ22 @see Eq.~38!# for cylindri-
cal walls of positive and negative curvature at different bulk den
ties. The most probable orientations for positive and negative va
of Q22 are indicated in the sketches. The strong increase of
decay length with density forR/L525 signals the formation of a
nematic wetting layer.
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R1L filled completely with an isotropic fluid and in contac
with the vacuum. In this case the grand-canonical potentia
the sum of a bulk term and a surface term proportiona
gvac which leads to

4p~R1L!2bgvac
S ~R1L!

52
1

8
rb

2E
0

R1L
drr E

R1L

`

dr8r 8w00~r ,r 8!. ~40!

In deriving this expression we have used the relation

1

4pr E0

`

dr8r 8w00~r ,r 8!54v0 , ~41!

which can be proven using Eqs.~13! and ~31!. After some
algebra one finally obtains

4pR2bgS~R!54pE
R

`

drr 2H 2pE
21

1

dxr̂~r ,x!

3@ ln 4pr̂~r ,x!l3212bm#

2rb~ ln rbl3212bm!J
1

1

2
rb

2E
R

`

dr1r 1F24pr 1v01E
R

`

dr2r 2

3 (
l 1 ,l 2

a l 1
~r 1!a l 2

~r 2!wl 1l 2
~r 1 ,r 2!G . ~42!

Inside a sphere the fluid volume is finite, which does n
allow us to carry out the thermodynamic limit. Instead w
definegS as

4pR2gS~R!5V~R!2
4p

3
uRu3vb . ~43!

The resulting expression forg(R) is identical to Eq.~42!, but
with all radial integrations spanning the interval from 0
uRu instead of fromR to `. If one uses the fact that th
equilibrium profile solves the Euler-Lagrange equation E
~26! and that the bulk density satisfies the equation lnrbl

3

5bm2rbv0, these results can be cast into the following si
pler form:

4pR2bgS~R!54pE drr 2@122a0~r !#

2
1

2
rb

2E dr1r 1F24pr 1v01E dr2r 2

3 (
l 1 ,l 2

a l 1
~r 1!a l 2

~r 2!wl 1l 2
~r 1 ,r 2!G ~44!

with different integration limits for the outside and inside,
stated above. However, one should keep in mind that
~42! represents the surface contribution to the density fu
tional and is minimized by the equilibrium profile where
Eq. ~44! only applies to the equilibrium solution. In practic
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es
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the calculation of the surface tension via both formulas p
vides a helpful check of the numerical procedure.

The corresponding expression for the cylinder is

2pRgC~R!5 lim
L→`

$V~R,L!/H2p@~R1L!22R2#vb

22p~R1L!gvac
C ~R1L!%. ~45!

No truncation in the axial direction is needed becauseV is
a
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-evidently proportional to the macroscopic heightH. Here we
could confirm the analog of Eq.~41!, i.e.,

E
0

`

dr8r 8w0000~r ,r 8!58p2v0 , ~46!

only numerically. The resulting expressions for the surfa
tension, which with the modifications quoted above are a
valid for the inside of a cylinder, are
2pRbgC52pE
R

`

drr H E dvr̂~r ,v!@ ln 4pr̂~r ,v!212bm#2rb~ ln rbl3212bm!J
1

1

2
rb

2E
R

`

dr1r 1F22pv01E
R

`

dr2r 2 (
l 1 ,l 2 ,m1 ,m2

m l 1m1
~r 1!m l 2m2

~r 2!wl 1m1l 2m2
~r 1 ,r 2!G ~47!

and, at equilibrium,

2pRbgC52pE
R

`

drr rb@12A4pm00~r !#

2
1

2
rb

2E
R

`

dr1r 1F22pv01E
R

`

dr2r 2 (
l 1 ,l 2 ,m1 ,m2

m l 1m1
~r 1!m l 2m2

~r 2!wl 1m1l 2m2
~r 1 ,r 2!G . ~48!
by
t

hat

,

sur-
We remark that the surface tension depends on the
sumed position of the actual surface@17#, i.e., on the defini-
tion of what is denoted as the volume of the sphere or c
inder, which is not uniquely determined. A different choi
for this position would alter the volumes and surface ar
occurring in Eq.~39! and thereby in general lead to a diffe
ent value of g. For the planar case this change isDg
5pDx, whereDx is the shift in the surface position, whil
more complicated relations emerge for curved surfac
which may significantly change the curvature dependenc
what is denoted as the surface tension. On the other h
experimentally observable quantities do not depend on
arbitrariness of assigning a particular value to the volume
the cavity. For the thin rods we employed the natural defi
tion that the defining surface is given by the position of t
rod ends at closest approach. But already for hard sphere
for rods of finite thickness, there are at least two poss
‘‘natural’’ definitions ~see, e.g., Figs. 1 and 14 in Ref.@18#!.

The surface tensiong0 in the ideal gas limit is obtained
from Eqs.~44! and~48! by neglecting the interaction contr
butions and by inserting the ideal profilesr̂0(r ,v) from Ap-
pendix B. This results in

bg0
S

r0
5

1

R2E dr r 2@122a0~r !#5
1

R2E dr r 2@12xmax~r !#

~49!

for a sphere~with integration limits forR"0 as described
above! and
s-

l-

s

s,
of
d,
is
f

i-

, or
le

bg0
C

r0
55

1

RER

`

dr r F12
2

pE0

1

dxfc~r ,x!G , R.0

1

uRu E0

uRu
dr r F12E

0

1

dxS 12
2

p
fc~r ,x! D G , R,0

~50!

for a cylinder. This limit has been discussed extensively
Yaman et al. @13,14#, who found the surprising resul
bg0 /r05L/4 for rods outsideany convex body, while this
expression is modified inside a sphere or a cylinder, so t

bg0
S

r0
55

L

4
2

L3

48R2
, R,0

L

4
, R.0

~51!

and

bg0
C

r0
55

L

4
2

L3

128R2
1O~R23!, R,0

L

4
, R.0.

~52!

We have confirmed these results~analytically for the sphere
numerically for the cylinder! by using Eqs.~49! and ~50!.
The most interesting aspect of these findings is that the
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face tension is not analytical at 1/R50, which may lead to
unexpected behavior of membranes immersed in collo
rod suspensions.

We have determined the surface tension in the presenc
the interparticle interactions for a series of bulk densities
radii. The results are shown in Fig. 7 as a function ofrb for
fixed R and in Fig. 8 as a function ofR for fixedrb . For each
data point, four~spheres! or three~cylinders! numerical cal-
culations with different values of the cutoffl max were per-
formed. The results were extrapolated tol max5` using a fit
function linear or quadratic in 1/l max. The differences be-
tweeen the values at the largestl max and the extrapolation
become considerable@D(bg)/(rbL).0.02# at large densi-
ties. From comparison of the results obtained by quadr
and linear extrapolation, we estimate the error ofbg/(rbL)
to be 0.01 forrb* 54 but only 0.001 forrb* <2. Finally we
have interpolated smoothly between the 13 data points ta
for each radius. In the case of a cylinder at the highest d
sity rb* 53, the result obtained separately for the special c
of a planar wall lies slightly~by 0.003 in the units used here!
above the almost linear curve through the other points
possible explanation for this observation is that at the pla
wall a uniaxial orientational distribution has been assum
while the actual equilibrium profile might exhibit a sma
spontaneous biaxiality as found at the cylindrical wa
Therefore, the planar wall result has not been used for
interpolation scheme in this case.

Figure 7 shows the surface tension divided by the den
to allow for a better comparison with the ideal rod resu
that predict a density-independent constant for this ratio
all cases the interaction significantly increases this quan
by up to 50% for the intermediate densityrb* 52. In the
upper density range saturation or the formation of a ma
mum are observed. The results for a planar wall are in g
agreement with those obtained by Maoet al. @11#, who ef-
fectively used the same theory but a different numeri
method. For almost all densities the surface tension is hig
for negative than for positive curvature, in contrast to t
behavior atrb→0. In the latter case,g is constant forR

FIG. 7. Density dependence of the surface tension for differ
wall geometries and curvatures. In the ideal limitbg/rbL takes on
the density-independent values 0.25 for 1/R>0 ~cylinders, spheres
and planar wall!, and 0.2492~0.2497! for a sphere~cylinder! with
R/L525. The differences between these three values are not
ible on the scale of the figure.
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.0; the slightRdependence forR,0 is hardly visible on the
scale of Fig. 8. On the other hand, for densities of the or
of 1 in reduced units the dependence onR is dominated by a
term linear in 1/R that is absent in the ideal limit. The de
pendence onR becomes stronger and less linear with incre
ing density, especially for the spherical case.

Due to the limited number of radii for which calculation
were performed, we are not able to decide whether the sm
discontinuity of the second derivative ofg(1/R) at 1/R50
that occurs in the ideal limit persists also at finite bulk de
sities. However, our data do not preclude this possibility. I
commonly assumed that the surface free energy density f
general surface with principal curvatures 1/R1 and 1/R2 has
the Helfrich form@19#

g~1/R1,1/R2!5gP12kF1

2S 1

R1
1

1

R2
D2c0G2

1k̄
1

R1R2
1•••

~53!

with the stiffness coefficientsk and k̄ and the spontaneou
curvaturec0 . Inter alia, this form predicts that the contribu
tion to g(1/R) linear in 1/R for a sphere is twice that for a
cylinder. From our numerical results we found that this re

t

is-

FIG. 8. Curvature dependence of the surface tension for~a! a
sphere and~b! a cylinder at various densities. In the limit of non
interacting rods (rb50) there is a slight decrease ofg for negative
curvature, which is hardly visible on this scale. Taking into acco
the interparticle interactions leads to a substantial enhanceme
the curvature dependence already forrb* 51. We have interpolated
smoothly between the seven data points calculated for each cu
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tion is approximately fulfilled at low densities, but there a
substantial deviations from it at higher densities. Moreov
the Helfrich expression cannot be applicable for all signs
the curvatures already in the ideal limit due to the aforem
tioned nonanalyticity ofgS(1/R) andgC(1/R).

We conclude that for phenomena for which the curvat
dependence of the surface tension matters, the nonintera
approximation is qualitatively wrong already at relative
low densities~compared to the transition density to the ne
atic phase! and at any fixed curvature it produces rather la
quantitative errors in the absolute value ofg.

V. SUMMARY

For an isotropic fluid of needlelike hard spherocylinde
of lengthL near hard spherical or cylindrical walls, we ha
obtained the following main results.

~i! Due to the interparticle interactions, the probability
finding a particle with a given orientation is strongly in
creased close to the wall when compared to the bulk fluid
a given distancez of the center of mass from the wall, or
entations for which one end of the rod touches the wall
most favorable~see Fig. 2!.

~ii ! Since the range of accessible orientations decre
when the particle approaches the wall, the orientation
averaged density vanishes forz→0. It exhibits a cusp atz
5L/2 where the rods lose contact with the surface~Fig. 3!.

~iii ! The parallel alignment favored by the surface dec
more slowly when the bulk density is increased~Fig. 4! and
is stronger if the wall curves towards the fluid instead
away from it ~Fig. 5!.

~iv! A cylindrical wall curving towards the fluid induce
biaxial orientational order with preferential alignment par
lel to the cylinder axis. With increasing bulk density a ne
atic wetting layer develops in this case~see Fig. 6!.

~v! The density and curvature dependences of the w
fluid surface tension are shown in Figs. 7 and 8. In cont
to the results for non-interacting particles given by Eqs.~51!
and~52! the surface tension decreases with increasing cu
ture and exhibits a linear behavior around the planar li
which leads to a spontaneous curvature of a membrane a
from a fluid of rodlike~colloidal! particles.
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APPENDIX A: DETERMINATION OF THE EXPANSION
COEFFICIENTS OF THE MAYER FUNCTION

Equation~7! serves as the starting point which defines
expansion coefficientsf l 1l 2m(r ). As far as the azimutha

angles are concerned, the integrand depends only onf̂12

5f̂22f̂1 because

Ylm~u,f!5klmPlm~cosu!e2 imf, ~A1!
r,
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where the coefficientsklm relating the spherical harmonics t
the associated Legendre functionsPlm are given by

klm5~21!mS 2l 11

4p

~ l 2m!!

~ l 1m!! D
1/2

for m>0,

klm̄5~21!mklm . ~A2!

Therefore after the substitutionsf̂s5
1
2

(f̂11f̂2) and f̂12

5f̂22f̂1 , the integral overf̂s renders a factor 2p. In Eq.
~7! we now perform the integrations in the following orde

f l 1l 2m~r !52pkl 1mkl 2m̄E
21

1

d cosû1

3E
21

1

d cosû2E
0

2p

df̂12

3 f ~r ,û1 ,û2 ,f̂12!Pl 1m~cosû1!

3Pl 2m~cosû2!eimf̂12. ~A3!

In the limit D/L→0, the two rods overlap only in a sma
rangeDf̂12 aroundf̂1250 or f̂125p, approximately given
by Df1252D/p, wherep is the distance between the inte
section point and the line joining the centers of the rods,
shown in Fig. 9. From this figure one easily derivesp
5r/(cotu12cotu2); based on appropriately modified figure
one finds that this expression is also valid ifu1.p/2 or u2

FIG. 9. Geometry of two overlapping rods in the limitD/L

→0. Only one-half of each rod is shown. Their centers lie on thẑ
axis and have a distancer. In order to overlap, both rods must li
approximately in the same plane~a!. Part~b! shows a vertical pro-

jection from which the allowed azimuthal rangeDf̂1252D/p can
be determined. Rod 2 is drawn in the two positions for which it ju
touches rod 1.
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,p/2. Therefore it is sufficient to replace thef̂12 integration
by the factorDf̂12, to replace the integrand by its value
f̂1250 or p, and to examine only the overlap of two infi
nitely thin rods in thex̂-ẑ plane. In integrations over the fu
spatial anglesv̂ i we assign an intrinsic directionality to th
rods such that their ‘‘front ends’’ point into the directio
( û i ,f̂ i) and their ‘‘rear end’’ into the direction (p2 û i ,2p

2f̂ i). In order to calculatef l 1l 2m it is sufficient to integrate
over the configurations with overlap of the two front end
where necessarilyf̂12.0. One can easily show by appropr
ate substitutions that the other three possibilities for ove
yield exactly the same contribution to the total integral,
that one finds

f l 1l 2m~r !5216pkl 1mkl 2m̄

D

r E21

1

dx1Pl 1m~x1!

3E
xmin~r /L,x1!

xmax~r /L,x1!

dx2Pl 2m~x2!S x1

A12x1
2

2
x2

A12x2
2D .

~A4!

Herexmin andxmax denote the smallest and largest value
x25cosû2 for given x15cosû1 and r /L for which the front
halves of the rods overlap, as shown for an example in
inset of Fig. 10. They can be determined by tedious
straightforward geometry, which yields two basic formul
for thex value at touching, depending on whether the end
rod 1 touches rod 2 or vice versa:

xt
~1!~r 8,x!5

2r 82x

A122r 8x1r 82
,

xt
~2,6 !~r 8,x!52r 8~12x2!6xA124r 82~12x2! ~A5!

FIG. 10. Illustration of the cases that must be distinguished

the determination of the minimum (xmin5cosû2
max) and maximum

(xmax5cosû2
min) value ofx2 so that two rods overlap for givenx1

5cosu1 andr. The appropriate expressions forxmin andxmax for the
regionsA, B, C, andD are given in the main text. In the unlabele
region containing the inset, overlap is not possible. The inset sh
an example from regionB where the end of rod 2 touches rod 1
the minimum angle and vice versa at the maximum angle.
,

p
o

f

e
t

f

with r 85r /L. As illustrated in Fig. 10, the following region
in the (r 8,x) plane must be distinguished:

(A) for 0<r 8<1/2 andr 8<x<1: xmin5xt
(1) andxmax

51, (B) for 1/2<r 8<1 and r 8<x<1: xmin5xt
(1) and

xmax5xt
(2,1) , (C) for 1/2<r 8<1/A2 and rA121/4r 82

<x<r 8: xmin5xt
(2,2) and xmax5xt

(2,1) , (D) for 0<r 8
<1/2 and21<x<r 8: xmin5xt

(2,2) andxmax51.
For givenl andm the integration overx2 in Eq. ~A4! can

be carried out analytically. In the remaining numerical in
gration special care must be taken forr 8,1/2 due to the
square root singularity atx151. All coefficientsf l 1l 2m are of

the order ofD/L and vanish forr /L.1. They diverge for
r /L→0, but they appear only in the productr f l 1l 2m(r ) @see
Eqs.~13!, ~16!, and~19!# which is finite in this limit. For two
finite values ofD/L the coefficientsf l 1l 2m have been calcu-
lated by Moore and McMullen@7#.

A useful check of the numerical results is obtained fro
the observation that the excluded volumevex(cosg) for fixed
angle g between the particle axes is related to the Ma
function via vex(cosg)52*d3r12f (r12,v1 ,v2) from which
one derives

E
21

1

d cosgPl~cosg!vex~cosg!

5
2

2l 11(m ~21!m11E
0

`

drr 2f l lm~r !. ~A6!

The left-hand side can easily be determined using the w
known result ~see, e.g., Ref.@2#! vex(cosg)52DL2usingu
1O(D2L) and thus provides a sum rule for the second m
ments of the expansion coefficients. Our numerical res
passed this check.

APPENDIX B: DENSITY PROFILES
FOR NONINTERACTING RODS

In the ideal limit r̂(r ,v) adopts the constant valuer0/4p
for orientationsv that are allowed by the presence of th
hard wall and vanishes otherwise. Thus it is sufficient
determine the limiting orientations for which the rod ju
touches the wall. At a planar surface the maximum allow
value for x5cosu is xmax52z/L for z<L/2 while the rod
cannot touch the wall forz.L/2 so thatxmax(z>L/2)51. At
all surfaces the minimum value ofx clearly is2xmax because
of the head-tail symmetry. Thus in the following it is suffi
cient to consider positivex.

1. Outside a sphere

As illustrated in Fig. 11~a!, there are two different ways in
which a rod can touch the outside of a sphere: when the
is sufficiently far from the surface, its end touches the w
upon rotation, whereas when it is close to the wall at cont
it will touch it tangentially. The crossover between these t
regions takes place atr c5AR21L2/4 and straightforward
geometrical reasoning yields

r

s
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xmax5H 1, r>R1L/2

~L2/42R21r 2!/~rL !, r c<r<R1L/2

Ar 22R2/r , R<r<r c .
~B1!

2. Inside a sphere

In this case there is a minimum distancer c5AR22L2/4
from the surface beyond which all orientations are forbidd
In the accessible regionuRu2L/2<r<r c one finds@see Fig.
11~a!#

xmax5
R22L2/42r 2

rL
. ~B2!

3. Outside a cylinder

For a cylinder the profile depends in addition on the a
muthal anglef which we always measure from the axis th
is perpendicular to both the cylinder axis and the surf

FIG. 11. Geometries for the determination of the allowed ori
tations at curved walls.~a! Outside a spherical wall the rod touche
the wall with its end ifr .r c ~rod 1!, but tangentially ifr ,r c ~rod
2!. Inside a sphere only end contact can occur~rod 3!. From this
figure Eqs.~B1! and ~B2! can be derived.~b! Projection of the
corresponding problem for a cylindrical wall onto the plane perp
dicular to the cylinder axis. Equations~B3! and~B4! can be derived
usingxP5(L/2)sinu cosfc andzP5(L/2)cosu.
.

-
t
e

normal. Thus here we have to determine the rangeI f of
allowed values off for fixed r and cosu. If the rod touches
the cylinder at the anglefcP@0,p/2#, then due to symmetry
one has I f5@0,fc#ø@p2fc ,p1fc#ø@2p2fc,2p#.
With the help of Fig. 11~b! one finds for contact between th
rod end and the surface

cosfc5
2AR22~r 2L/2 cosu!2

L sinu
, ~B3!

whereas for tangential contact one has

cosfc5cotu
R2

Ar 22R2
. ~B4!

-

-

FIG. 12. In calculating the accessible orientational space fo
rod outside a cylinder, different expressions, presented in the m
text, apply in the regions labeledA, B, C, andD for the maximum
azimuthal anglefc at given values ofx5cosu and r. The figure
corresponds to the caseR/L51.3, but its topology is the same fo
all radii. Only for configurations corresponding to regionD does the
rod touch the cylinder tangentially. For larger values ofR as actu-
ally used in the calculations presented above,r c is closer toR and
the regionsC andD are much smaller.

FIG. 13. Accessible orientational space for a rod near walls
different geometries at a fixed distancez/L50.2 and radiusuRu/L
53. Spatial angles to the left of the lines are allowed; those to
right are forbidden by the presence of the wall. There is no dep
dence on the azimuthal anglef for spherical walls. For a cylinder
at f50 (f5p/2) the wall is effectively spherical~planar!, which
explains the common end points of the various lines.
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By determining the transitions between these two case
well as those to the rangesI f5B and I f5@0,2p#, we are
led to distinguish the following cases~see Fig. 12!:
(A) R<r<R1L/2 and 0<cosu<2(r2R)/L: cosfc

50, (B) r c5AR21L2/4<r<R1L/2 and 2(r 2R)/L
< cosu<(L2/42R21r 2)/(Lr ): cosfc as given by Eq.
~B3!, (C) R<r<r c and 2(r 2R)/L<cosu<2(r2

2R2)/(Lr): cosfc as given by Eq.~B3!, (D) R<r<r c

and 2(r 22R2)/(Lr )<cosu<Ar 22R2/r : cosfc as given
by Eq. ~B4!.

In the remaining region withinR<r<R1L/2 all f val-
ues are forbidden, while obviously forr>R1L/2 all orien-
tations are allowed.

4. Inside a cylinder

In contrast to the previous case, here the accessiblf
range is centered around the cylinder axis, i.e., it has
form I f5@fc ,p2fc#ø@p1fc,2p2fc#. Since tangential
contact is not possible, the classification is a little bit simp
ys
as

e

.

In the region of interestuRu2L/2<r<uRu we obtain the fol-
lowing: (A) for cosu>2(r2uRu)/L: cosfc5p/2, (B) for
r>r c and cosu<2(r2uRu)/L or for r<r c and (R22L2/4
2r 2)/(Lr )<cosu<2(r2uRu)/L:

cosfc5
2AR22~r 1L/2 cosu!2

L sinu
, ~B5!

(C) for r<r c and cosu<(R22L2/42r 2)/(Lr ): cosfc50.
In Fig. 13 we compare the accessible orientational sp

in these four cases for the same radiusuRu/L53 and the
same distance from the surfacez/L50.2. Naturally this
space is largest outside a sphere and smallest inside a sp
One also notices that for a cylinder thef dependence is
actually restricted to a rather small range of values for cou
while for most polar anglesu either none or all azimutha
angles are allowed. We emphasize again that the forbid
regions are also strictly forbidden for interacting rods who
profile is no longer constant within the allowed region.
ues,
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