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Fluids of rodlike particles near curved surfaces
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We study fluids of hard rods in the vicinity of hard spherical and cylindrical surfaces at densities below the
isotropic-nematic transition. The Onsager second virial approximation is applied, which is known to yield
exact results for the bulk properties in the limit of infinitely thin rods. This approach requires the computation
of the one-particle distribution function and of the Mayer function, which is greatly facilitated by an appro-
priate expansion in terms of spherical harmonics. We determine density and orientational profiles as well as the
surface tensiory as a function of the surface curvature radRisAlready in the low-density limit of nonin-
teracting rodsy(R) turns out to be nonanalytic atR# 0, which prohibits the application of the commonly
used Helfrich expansion. The interparticle interaction modifies the behavigRf as compared to the
low-density limit quantitatively and qualitativelyS1063-651X%99)12503-(

PACS numbg(s): 68.45-v, 61.30.Gd, 68.10.Cr, 82.70.Dd

[. INTRODUCTION axial order at the surface already below the bulk transition to
the nematic phase. Maet al. have compared this theory
A fluid of hard rods can be considered as the simplestvith computer simulations for finite aspect ratibéD [9]
model for nematic liquid crystals consisting of elongatedand have calculated the depletion force between planar walls
molecules. In a seminal paper in 1949, Onsager shdwkd or large spheres immersed in a solution of rgti8,11], us-
that the steric hard-body interactions alone can bring abouhg the Derjaguin approximation.
an isotropic-nematic transition. Although the steric interac- In the present work we focus on the orientational and
tions already capture many of the essential features of liquighositional order as well as the surface tension reaved
crystals, their actual behavior is complicated by the presencleard walls, taking into account the steric interactions be-
of dispersion forces, flexibility, dipole moments, etc. But for tween the rods. The curvature has an appreciable effect on
certain colloidal systems of rodlike particles of synthetic orthe structure and the thermodynamics of the fluid if the ra-
biological origin dissolved in a suitable solvent, the hard roddius of curvaturer is of the order of the particle length.
model provides a quantitatively reliable effective descriptionAccordingly as possible applications one can think of the
[2]. Among them, the ones that are studied in most detail aréollowing systemsii) rodlike particles confined to the inte-
the tabac mosaic virus and the fd-virus with length to rior of small pores within porous materials;) colloidal sus-
diameter(D) ratiosL/D of about 17 and 150, respectively pensions of rods that contain a second, diluted, component of
[2]. From a theoretical point of view the limit of infinitely larger, e.g., spherical particle§ji) membranes, especially
thin hard rods is especially interesting because it representgesicles, immersed in colloidal rod solutions, resembling,
one of the very few cases for which the exact density funce.g., solutions of viruses. The curvature-dependent surface
tional is known[1]. tension and the depletion forces in cdsghave been deter-
Even more than in simple liquids, which are composed ofmined by Auvray{12] and Yamaret al.[13,14] for fluids of
spherically symmetric particles, surface effects are of greamoninteracting rods corresponding to the limit of infinite di-
importance for liquid crystals. In the absence of externalution. Their most surprising result was that the surface free
fields, the orientation of the bulk fluid is determined by its energy does not contain a term linear in the curvatufe 1/
interaction with the container walls; this phenomenon isand that the quadratic term has different amplitudes for dif-
called anchoring3]. For the simplest case of a hard rod fluid ferent signs of the curvature. This nonanalyticity prohibits
near a planar hard wall, as studied theoretically by Hotysthe application of the common Helfrich expansion. Thus for
and Poniewierski4—6], the wall induces parallel alignment case(iii) above the effect of the rods on the elastic properties
of the nematic director. An isotropic-nematic interface alsoof the membranes cannot be described by a renormalization
aligns the nematic phase parallel to the interface for largef the bending rigidities as it is possible for membranes ex-
aspect ratio& /D while a nontrivial tilt angle arises for lower posed to a suspension of spherical colloidal partifles or
aspect ratio$7]. In view of the substantial technical difficul- polymers[15]. In order to be able to assess the range of
ties which are associated with the theoretical description on galidity of the results obtained in the ideal limit of noninter-
truly microscopic scale, especially for curved surfaces, it is acting rods, in the present paper we tackle the full problem
natural first step to analyze the interface betweengb&go-  including the interparticle interactions by employing the On-
pic phase and a hard wall. The corresponding density andager density-functional theogec. 1), which yields den-
orientational order profiles nearpdanar wall have been de- sity profiles(Sec. Il) and the surface tensig®ec. 1\V). Our
termined by PoniewiersKi8] in the framework of the On- main results are summarized in Sec. V while technical de-
sager theory, who also found indications for spontaneous bitails are presented in Appendixes A and B.
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6 with the interparticle vector,,=r,—r,; and the Mayer func-
; j U tion f(ry,, w1, 5), which for hard particles equals1 if the

two particles overlap and zero otherwise. Onsager demon-
strated that this approximation becomesactin the limit
D/L—0 for the bulk propertie$l], and this is expected to
Q % hold also for surface quantitig$,11]. For a planar surface
0 this approach has turned out to be quantitatively reliable for
2 ﬂ 0 D/L=0.1[11]. . .
As mentioned in the Introduction, the corresponding prob-
0 lem with noninteracting particles, i.e., in the presence of the
é hard wall interaction but with-.,=0, has been analyzed by
= Yamanet al. [13,14). Taking into account the interparticle
g # interaction increases the complexity considerably due to the
ensuing nonlocality and the high dimensional integration in
Eg. (2). In the remaining part of this section we evaluate the
FIG. 1. The system under consideration consists of a fluid ofeXPression foiF, by exploiting the symmetries of the den-
monodisperse hard spherocylinders of diamé&seand lengthL in  sity profile p(r,) using appropriate expansions in terms of
contact with a spherical or cylindrical hard wall of radiBsWe  spherical harmonics. In Sec. Il the thermodynamically
assume that the orientational distribution only depends on the norstable equilibrium profile is obtained by minimization of the
mal distancez and, for a spherical wall, the angteof the particle  density functional, which amounts to solving an integral
axis with respect to the surface normal. During the evaluation of thexquation. The value of the functional at this minimum is the
excess free energy, the particle orientations are described in thr{lfrand canonical potential of the inhomogeneous fluid from
different reference frames: the framey'z’ fixed in space, the \yhich the surface tension at the curved walls is determined
framexyz fixed by the local normal direction, and the interparticle ;4 gec. |v.
framexyz The rotation between the latter two is described by the The part|c|e orientation is Conven|ent|y described in a lo-
Euler angles);, i, andy; [see Eq(8)]. The different sizes of the c3| reference frame whose polar axis is that wall normal
spherocylinders indicate that the particles typically do not lie in theyhich runs through the rod center and whasaxis, in the
x'y" plane and thus only their projection onto that plane is shown 556 of a cylindrical wall, is aligned with the cylinder axis
For reasons of clarity only the polar angié's 6, and@ aAre shown, (see Fig. 1 Since we are interested in bulk densitigs
but not the corresponding azimuthal angie's ¢, and ¢. below the isotropic-nematic transition, i.e.,py
<4.2(DL?) ! [1], we may assume that the number density

Il. MODEL AND DENSITY-FUNCTIONAL THEORY p(r)=Sdo’p(r,»’) as well as the orientational distribution

Based on density-functional theory we study a fluid ofmeasured in the local reference syst¢denoted byw
hard spherocylinders of length and diameteD in the vi- = (6,¢)] depend only on the radial coordinatén a spheri-
cinity of a hard spherical or cylindrical surface of radigs cal or cylindrical coordinate system, which allows us to
(see Fig. 1 In order to keep the numerical difficulties trac- make the following ansatz:
table, we restrict ourselves to the liniit/L—0 with R/L

fixed. The number density of the centers of mass of these ~g _Po S
thin rods at a point with orientationew’ =(6’,¢') is de- P @) 27720 a(r)Pi(cos) ©
noted byp(r,w'). The corresponding grand-canonical func-
tional is given by and
o
BOL{p(r,0")}] pPer@=pp 2 2 pim(r)Yim(@) @
:J dBrdw’ p(r, 0 )[IN@Gm\3p(r,0')—1— Bu for a spherdS) and a cylinder C), respectively. The func-
’ ' tions P, and Y|, are Legendre polynomials and spherical

harmonics, respectively. For large distances from the wall,
the fluid is isotropic[ p(r,w) = pp/4m], so thata,(r—)
=180 and um(r—=)=(47) 25, 0. At a sphere the
density does not depend on the azimuthal angleAt a
cylinder the symmetries

+BV(r,0")]+ BFe[{p(r,0)}]. (1)

HerekgB=1/T is the inverse temperaturg, is the chemical

potential, V(r,w') is the external potential exerted by the

hard wall, and\ is the thermal de Broglie wavelength.

Within the Onsager second virial approximation the excess - ~ ~ ~

free onergyF o, i L1 Vel SpPICKIMELON (8 SXCES 50,01 =p(1 w=0.9) =1 0= $) =1 0.7 )
ex

imply that u;,=0 if | or mis odd andu= pim= u, for |

andm even(here and in the followingn= —m).
- , ., The coordinates can be expressed in terms of the coor-
Xp(rz,w5)f(r2,01,0;) (2)  dinatesw’ corresponding to a frame fixed in space by a

- 1 R
BFLL{h(r.0)1= 5 | &riduidrdon(ry o))
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(position-dependeprotation. Therefore the angular integra-

tions in Egs.(1) and(2) can be taken also over. However, BFs=—(4mpp)? X [(2l;+1)(2l,+1)]7*
. . L . I1,1o,m

the Mayer function is naturally expressed within a third co-

ordinate systemw given by the interparticle vectar;,. In y R+L dr.r2 R+L drar2

order to perform the angular integrations in the following we R Fafy R Faraen, (ra)a,(ra)

will determine the transformation from to w. The defini- )

tion of the different reference frames is illustrated in Fig. 1. Xf d cosvf Fo)Y oY 0
For any uniaxial molecule the Mayer function can be ex- H1om(F12) Y1372, 0Y 1 72,0)-

panded a$16]

11
F(F 10y @1, 0p) = E f|1|2m(r12)Y|1m(f:)1)Y|25(5)2)- The anglesy, ,, and 5, are those between. the vectars
1,)5,m andr,, r; andrq,, andr, andrq,, respectively, and,
(6)  =(r2+r2—2r,r,cosy)"? If we user,, instead of coy as
1 2
an integration variable, we finally obtain
The solid angles; refer to a particle fixed reference system
(see Fig. 1 with its z axis parallel to the interparticle vector 2 R+Ldr . R+Ldr ;
r 1, (and arbitraryx axis). The determination of the expansion Foc 2 p b, 11 22
coefficients
Xay (r1)an(r2)wy 1,(r1,ra) (12)
f|1|2m(f12):f dwdw,f(11p,01,= 0,01, @) with
* - * - 32 2
><Yllm(wl)Y|25(wz) (7) Wit (FTp)=— ™
12 (21,+1)(21,+1)
is discussed in Appendix A. Spherical harmonics in different r+ry
reference systems are related via the rotation matfigs x> | ‘dr12r 12f1,1,m(" 12)
[16]: m ri—rp
XYl 71,00 Y1l 72,0) (13
Yim(@) =2 Do, 7. x0) Yin(@),  i=12, ®)
n
r2—r2—r? r2—r2+r?
where the Euler angleg;(rq,r,),n;(r1,r,), and x;(rq,ro) _.2 1 12 _.2 17712
. . . ~ cos7my= ,  COS7p= (14
describe the rotation of the particle based axeg pnto the 214, 2ryryp
surface normal based axes;] (for the definition of the ) ) )
Euler angles see, e.g., Fig. A.6 in REE6]). Inserting Egs. An equivalent expression for planar wall with surface

(3), (6), and(8) into Eq. (2) yields for the spherical case areaA can be derived along the same lines. In this case the
Euler angles are the same for both particles because the di-

p? rection of the surface normal is the same everywhere. Again
BFS=— 2 E [(21;+1)(2],+1)] 17 one can choosé;= x;=0 and finds
I1.12,m
P 2 L L
Fe /A= dz f dz z
xfd3r1d3r2a,l(rl)a|2(r2)f,1,2m(r12) ARl 2pb|1 , Jo o 201, (21)
X P (zy—
XD (Y1, mXDD 2 (2,2, x2). (9 (22 Wiy, (21~ 22), 13

One still has the freedom to fix the orientation of thaxes where the interaction kernw|l|2 now depends only on one

in the different reference systems. If one chooses them to byariable:

all parallel to each other and perpendicular to the plane

spanned by, andr,, the transformations described by the WP, (21 = — 8w E dror
Euler angles become simple rotations around ythexis so 2272 (21;,+1)(21,+1) 2y 21
that U= X =0. With [16]

oo

X1 1,m(F 12 Y1 m(7,0)Y),m(72,0) (16)

4
D'*,(0,7,00= \/mY,m(n,O) (100 with m=arccosg;,/rip). It can be shown thatw (R
+Zl,R+Zz)=47TW|F;|2(21—ZZ)+O(1/R) for z;,z,<R.
one finds for a system of radial size outside of a spherical ~ The cylindrical case is considerably complicated by the

cavity of radiusR, lower symmetry ofp(r, ). Using Egs.(2), (4), and(8) and
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performing the integrations oves,, w,, as well asz; and riz—u 12
b1, wWherer;=(r;,z,#;), i=1,2, in cylindrical coordi- A= : (24)
nfites, one olbtainls o [(ri+r2)*=ullu=(ri=rz)?]

1 R4 L Rt L For the inside of a spheteylinder the integration range
BFS/H= Epﬁf drlrlf drors for the radial integrals in Eq12) [Eq. (17)] has to be re-
R R placed by[O,R].

X 3 gt m, (T2 (T2 Wi, (T T2) lll. DENSITY PROFILES
1.'2-11,112
(17 The equilibrium density profile minimizes the grand-
canonical functional, i.e., it is a solution afQ/8p(r,w)
with =0 under the boundary conditioﬁ(r,w)ﬂprw for r
—o0, By using the relation
o 27 _
W|1m1|2m2(r1,f2)=—27T% f_wdzlzfo ddiofy 1,m(ri2) Sey(r')  21+1
= = S(r—r")P,(cosb) (25)
Sp(r,m)  2pb

| lo%x
X Dmlzh( ’plaﬂlel)Dr;zmz( 110217721)(2)'

18 and exploiting the symmetry propertyw|l|2(r1,r2)
18

=W,2|1(r2,r1) one finds for the spherical wall the Euler
Here H is the macroscopic height of the cylinder and Lagrange equation

Z1p=2 — 2y, $1o= by — b1, o= (15+r5+27, A

—2r,r,c0sh;) Y2 In a rather lengthy calculation the de- 4WR3P(f-9)ZEXF{BM—ﬂV(Fﬁ)
pendence of the Euler angles op,r,,z;,, and ¢, can be

worked out by decomposing the rotations that connect the Po 21, +1

different reference systems into three successive simple ro- T Am S, 2 Py, (cos6)

tations aroundintermediate coordinate axegsee Appendix
A2 in Ref.[16]). It is helpful to user,, andu=r3,— 73, as ., , ,
the integration variables which leads to X | drirfa (rw,,(rr') ). (26

With po(r,60)=(4m\3) texdBu—V(r,6)] as the corre-
sponding profile for noninteracting rods at the same chemical
potential one finds that

Wllm1 2mz(rl rz) - 16772

drof 1of)1,m(r12)
m Jiry—ry

r2
x| wr i -ul S

(r1=r2) p(r,0):=p(l‘,0)/l)o(r,9):32| Bi(r)Pi(cosd)  (27)
X[u=(ry=rp)?)} =12

xXcogm(iry— ihp) +Myx1+Myxo] satisfies
| ~
X (M)A, (72) (19 p(r,¢9)=exp{—2| P.(cosa)pm} (28)
Here the rotation matrices have been writter] 5§ with
Dhn( ¥, m,x) =€ '™"d| e ™y, 20 20+1
mnl s 7, X) mn(7) (20) o(r)= 4p;r 2 Ar'e e (v YWy (ror).
where the functionsnl'mn can be calculated by using Eq. (29)

(A.65) in Ref.[16]. The advantage of Eq19) is that the

inner integral can be evaluated without the time-consumingstrictly speakingp cannot be defined by Eq27) for the
calculation off Jom- N these variables the Euler angles arforhidden orientations, for which both, and p vanish. In-
, stead wedefineit by Eqgs.(28) and(29) in this region] The

re—rh—u cosn _fp—ritu 21) function po(r,6) equalspy/4m for orientations that are al-
21y Z2rgr, lowed by the hard wall and zero otherwise. The dengity
corresponding to the chemical potentialfollows from the

tany,=2r,A coszn,, tang,=2r,Acoszy,, (22 bulk limit of the density functional. For an isotropic fluid in

a volumeV one has

tany;=—2r,A, tany,=—2r,A, (23

1
with BOIV=Bwy=pp| INN°py—1=Bu+5ppve| (30
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with

1
(4)?

_ 3 _Tnh 2
Vo= fd rlzdwldwzf(rlz,wl,wz)—EDL .

(31

The same equation without the last term holds for the ideal

gas limit. Minimization yields pg=ppexplpo). The al-
lowed values off for givenr andR are determined in Ap-
pendix B. Thus based on the known functigm(r,x
=cos#) the coefficientse; in Eq. (29) can be expressed in
terms of the coefficient, introduced in Eq(27):

21+1 2 1 N
S S A | axP0PL (0l ),

(32

a(r)=

where the integration over can be carried out analytically
for given| and|’. This allows one to calculate the coeffi-
cientsB, by solving iteratively the following system of equa-
tions together with Eqg29) and (32):

21+1
B.(r)=7f de|(X)exr{—E P.f(X)pw(r)}
I/
(33

The advantage of first seeking the solutionfdnstead ofp

is that the former function is smoother near the transition

B. GROH AND S. DIETRICH
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FIG. 2. Full density profile* (z,cosd)=p(z,cosf)DL? outside a
sphere of radiuR/L=3 for the bulk densityp; =p,DL2=2. At
small distanceg from the wall, large values of cakare forbidden
due to overlap. Therefore the profile is exactly zero behind this
“step.” In the allowed region the most prominent feature induced
by the interaction between the rods is the strong increase of the
density at small distances For fixed z, orientations close to the
step, i.e., those with one end of the rod touching the wall, are
favored. If the interparticle interactions were neglected the profile
would be constant in the whole accessible region.

may differ from p,, although this effect is certainly numeri-
cally negligible in the examined range of rafi|=3.
In practice we have truncated &lsums atl .= 10| 2%

from allowed to forbidden orientations and hence can be bet= 8] for spheregcylinderg and the radial integrals were cut
ter approximated with a limited number of Legendre polyno-off at a distanceC=2L (£=1.5.) from the wall. Beyond

mials.

this distance the profile was assumed to take on its bulk

The cylindrical case can be treated completely analovalue and corresponding asymptotic corrections were added

gously. With the expansiop(r,®) =2 mvim(r)Ym(®) one
obtains

= Y (@)pyrm(T)

1".m’

Vim(r)= J doY( w)exp{
(34
with

p Iy ! ! !
Pin(1) =5 2 | dr'r sy (1 Wiy (17
7T|/’m/
(39

and

1 "
pml(r)=— 2, v./m«r)fdwvrmww./m/(w)po(r.w).
pb|”m/
(36)

to p; (pm) in the vicinity of the cutoff. A step size oAr
=0.02(Ar=0.0312%) was used for all functions of.
First the values ofv, | (rq,r2)[ Wi m 1,m,(r1,r2)] were cal-
culated and stored for all necessary values,oéndr, and
of the indices. This step required by far the largest fraction of
the computer time. Thereafter for a series of bulk densities
pp the coefficients3,(v,,) were determined by a simple Pi-
card iteration scheme with retardation.

In the following a negativepositive) radius R signifies
that the wall curves towardaway from) the fluid, andz is
the distance from the surface. As reduced density we employ
p* =pDL?; in these units the isotropic-nematic transition
takes place apyy =4.2[1], which provides an upper limit for
the present approach because in the nematic phase the orien-
tational structure does not exhibit the symmetries assumed

here. A typical density profil@(z,cosé) outside of a sphere

is shown in Fig. 2. Foez<L/2 orientations with large ca®
are forbidden so that the profile has a discontinuity along the
line cosf=xma(z) determined in Appendix B. When the

These equations are valid both for the outside and the insidg,4s do not interact among each other, i.e., fge-0, all

of the sphere or cylinder if the’ integrations are taken over gjjowed orientations have the same probability. The presence
the interval[R,) or [OR], respectively. But we note that o the steric interaction inducesstrongincrease of the den-
the functionspy have completely different forms in these sity close to the surface, while there is only a weak depen-
two cases(see Appendix B It is assumed that the fluid dence on cog within the allowed region. Orientations near
inside a spherical or cylindrical cavity is in equilibrium with the discontinuity, where one end of the rod touches the wall,
a particle reservoir at the chemical potenfiatorresponding  are slightly favored. Note that no packing effects are visible.
to the bulk density,, which is kept fixed wheiR is varied.  These will occur on the much smaller length scBleand

For small radii the actual density at the center of the cavitypresumably only at much higher densities where the packing
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1.2

0
1
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< f &
= 0.6 o .
. R/L =5, sph 02 — Ph=
0.4 - R/L=5,cyl ’ - p=1
! - R/L=e - Y=
2 .
0 i - R/L=-50cyl 03 T Pb=
ol i R/L=-5,sph e T P
0 0.5 : 15 2 0 0.5 ! 15 2
z/L z/L
FIG. 3. Normalized orientationally averaged densitz) for FIG. 4. Uniaxial nematic order paramet@p, as defined in Eq.

fluids in contact with planar, cylindrical, and spherical walls of (38) for a fluid outside a sphere of radil&/L =5 for different

positive and negative curvature for a fixed bulk dengify=2. The den5|t_|es. The tendency for parallel orientations, as indicated by

inset shows the behavior in the vicinity of the cusp which occurs af’®gative values 0y, becomes more pronounced and longer

z=L/2 and is followed by a rapid decay towards the bulk limit '@nged with increasing densit@,(z=0)=—0.3154.

n(z)=1. All curves have about the same valuezit=0.27 but

they do not intersect exactly at one point. For better visibility only

two curves are shown in the main part of the figure. The remainind=or the sphere due to the azimuthal symmetry one(gs

profiles lie in between these two. Close to the wall the number=0 for m# 0. The lowest nontrivial order parame®py(z)

density is larger for positive curvature. Inside a spha(e)=0 fo'r _is plotted in Figs. 4 and 5. A§(Z,w)/[pbn(z)]21 for z

very smallz because the _centgrs of the rods cannot come arbnranly_,o and in this limit onlyg@= /2 is allowed, it follows that

close to th_e waI_I. Smgll k_lnks in the smaltange Fh_at are caused by oz 0)=— JBI87=—0.3154. Negative values of,q

the numerical discretization were removed by fitting a smooth CUVe_icate that the rods are preferentially aligned parallel to the

to the raw data. C .
surface, which is of course enforced by the wall. The inter-

particle interactions tend to align the rods also #orlL /2,

fra:jqpon ¢ prthL is of qtrder_ unlt]}/ihThe protflles Iforkother where they cannot directly touch the wall, and increase the
ragil, even for the opposite sign of the curvature, 100 ess_enélignment forz<L/2 (see Fig. 4 The alignment is stronger
tially the same. In the latter case there is a very small regio

; . Bor positive than for negative curvatufsee Fig. 5.
close to the surface that is not accessible to any rod center. The biaxiality of the orientational distribution at a cylin-

For a cylindrical wall the profiles also depend on the az.i'der is measured b@,,(7). Positive(negative values corre-
muthal angle,.but except very qlose to surfaces with negativ pond to a preferential orientation perpendicufzaralle) to
(Elérvatures this depe_ndence IS very W_ea_k and _a plot %he cylinder axis. If the orientational distribution is sharply
p-(z,c0s6,¢) fqr any f_|xed¢ looks very similar to Fig. 2. ~peaked a= /2 and$p=0 (or p=m/2), Q,,takes on its
The normalized orientationally averaged number densityy,5vimum (minimum) value Q,,= =+ \/15/327 =+ 0.3863.
is defined by The results for cylinders of radil®/L= £5 are displayed in
Fig. 6. As expected, particlaaside a cylinder orient them-
_ ~ selves mainly parallel to the cylinder axis, the more the
n(z) f dop(z,0)/po. S stronger the interactions are. With increasing bulk density,

This function increases for smatlup to z=L/2, where it
exhibits a cusp and then rapidly decreases to its bulk limit 1 P =2
which is essentially reached alreadyzatL. As shown in

Fig. 3 within the examined range of curvatur¢R|(L=3),

it depends only slightly ofR. If 1/R is decreased)(z) be-
comes smaller for/L=<0.27 and larger for/L=0.27. The 8
results for the cylinder lie between those for the planar wall

-0.1

R/L =5, sph

(R=x) and for a sphere with the same radius. Due to the 9271 4 . R/L<5, ol

finite step sizeAr and the steepness b(z,w), the raw data - R/L=w

for n(z) exhibit visible kinks az=nAr for small integers. — R/L=-50¢yl

These have been removed from Fig. 3 by fitting of an appro- 03 — R/L=-5,sph

priate smooth function to the data. 0 85 N B A8 ;
We define position-dependent orientational order param- ' ' ' ’

eters as z/L

FIG. 5. Order parameté),, at fixed density}; =2 for different

1 R . . . - )
2=— | doY* Z.0). 38 wall geometries. Parallel orientations, i.e., negative value® gf
Qim(2) pbn(z)f oYin(®)p(z,0) (38) are more favored by negative curvatures.
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R+ L filled completely with an isotropic fluid and in contact
with the vacuum. In this case the grand-canonical potential is
the sum of a bulk term and a surface term proportional to
Yvac Which leads to

47(R+ L)*BYgud R+ L)

C)22

1 R+L ©
=—§p€f drrf ﬂdr’r’woo(r,r’). (40)

0 R+

In deriving this expression we have used the relation

0 0.1 0.2 0.3 0.4 0.5
z/L

1 ©
mfo dr'r’wog(r,r’')=4vg, (41
FIG. 6. Biaxial order parameté),, [see Eq(38)] for cylindri-
cal walls of positive and negative curvature at different bulk densi-which can be proven using Eq&l3) and (31). After some
ties. The most probable orientations for positive and negative valuealgebra one finally obtains
of Q,, are indicated in the sketches. The strong increase of the

decay length with density fdR/L= —5 signals the formation of a 2. s ® s .
nematic wetting layer. ATR°BYyI(R) =47 . drrei 2 7ldXP(r,X)

X[In4mp(r,x)\3—1—Bu]
the decay 0fQ,, towards the bulk value 0 becomes signifi-
cantly slower, which probably signals the onset of the for- 3
mation of a nematic wetting layer upon approaching the = pu(In ppA —1—,3#«)}
isotropic-nematic transition. This interpetration is supported
by the fact that the iterations did not converge fr=3.5. 2J°°d
For this density range spontaneous biaxial orientational order + 2P g Al
has also been predicted apkanar surface[8]. For positive
curvature,Q,, has the opposite sign and a much lower abso-
lute value. The limitz—0 for Q,, cannot be determined
rigorously in this case because the allowed region ispace
does not reduce to a single point so tl@,(z—0) still Inside a sphere the fluid volume is finite, which does not
depends on an unknown function¢f Only in the ideal case allow us to carry out the thermodynamic limit. Instead we
ppb—0 is this function constant so thaQ,)z—0) definey®as
=/5/96m=0.1288. Here, the effect of the interactions is to

©

_4’7Trlvo+j drzrz
R

. (42

><|2| a (T a) (r2)W(F1,r2)
1.2

increase the probability for orientations parallel to the axis so 2 Sio Am 4
that Q,, may even become negative. 4TRyI(R)=Q(R) - ?|R| @p - (43)
IV. SURFACE TENSION The resulting expression fai(R) is identical to Eq(42), but

with all radial integrations spanning the interval from 0 to
The curvature-dependent surface tensi¢R) is thatcon-  |R| instead of fromR to «. If one uses the fact that the
tribution to the grand'canonical potential which scales W|thequ|||br|um prof”e solves the Eu|er-|_agrange equation Eq
the surface area of the confining wall. In order to determing26) and that the bulk density satisfies the equatiopyh?

this quantity for positive curvature, one has to consider sys=pg,, 1, these results can be cast into the following sim-
tems of finite sizel in the radial direction. However, such pler form:

systems necessarily contain a second, isotropic liquid-

vacuum interface generated by the cutoff yielding the corre-

sponding artificial surface contributiom,,.. Hence for a 47TR2,375(R)=47TJ drr?[1-2ao(r)]
sphere we have

1
) s . 4 - —Epﬁf dryry —4wr1vo+fdr2r2
47RYS(R)= lim | Q(R,£) = S [(R+£)*~R]
L—ow
X|2| all(rl)a|2(r2)W|1|2(r1yfz)} (44)
—4m(R+L)*yeed R+ L) |, (39

with different integration limits for the outside and inside, as
where w,=—p (see EQq.(30)) is the bulk grand-canonical stated above. However, one should keep in mind that Eq.
potential density ang is the bulk pressure. (42) represents the surface contribution to the density func-
The vacuum surface tension can be obtained separately lipnal and is minimized by the equilibrium profile whereas
considering the one-surface problem of a sphere of radiugg. (44) only applies to the equilibrium solution. In practice,
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the calculation of the surface tension via both formulas proevidently proportional to the macroscopic heigthtHere we
vides a helpful check of the numerical procedure. could confirm the analog of E@41), i.e.,
The corresponding expression for the cylinder is

27RYS(R) = lim {Q(R,£)/H— a[(R+ £)?— R wy, fo dr'r'Wooodr.1") =877vo, (46)
L—00
—2m(R+ L) yS,dR+ L)} (45  only numerically. The resulting expressions for the surface

tension, which with the modifications quoted above are also
No truncation in the axial direction is needed becaflses  valid for the inside of a cylinder, are

27-rR,ByC=277fmdrr[ J' dw;)(r,w)[ln 477';)(r,w)—1—,8u]—pb(|n pb)\?’—l—,B,u)]
R

1 ,(=
+§beRdr1r1

—2mvot fRdr2r2| > M|1m1(rl)M|2m2(rz)W|1m1|2m2(r1,rz)} (47

1:l2,mp.my

and, at equilibrium,

2¢R3y0=2wf drr pp[1— VA7 eo(r)]
R

1 o0 o0
- Eng drlrl[ —2mvot fR drorp 3 2%““2 Mllml(r1)M|2m2(r2)Wllml|2m2(f1,rz)}- (48)
|
We remark that the surface tension depends on the as- 1 (= 2 (1

sumed position of the actual surface?], i.e., on the defini- c ﬁfR drr|1- ;fo dXee(r,Xx) |, R>0
tion of what is denoted as the volume of the sphere or cyI-%:
inder, which is not uniquely determined. A different choice Po iJ'W 3 fl 2
for this position would alter the volumes and surface areas IR| Jo drrl 0 dx 1 7T¢C(r,x) » R<0
occurring in Eq.(39) and thereby in general lead to a differ- (50

ent value ofy. For the planar case this change Asy

= pAX, wher_eAx Is the ?h'“ in the surface position, while for a cylinder. This limit has been discussed extensively by
more complicated relations emerge for curved surfacest,am‘,;ln etal. [13,14, who found the surprising result

which may significantly change the curvature dependence 0/§70/Po= L/4 for rods outsideny convex body, while this

what is denoted as the surface tension. On the other handyression is modified inside a sphere or a cylinder, so that
experimentally observable quantities do not depend on this

arbitrariness of assigning a particular value to the volume of

the cavity. For the thin rods we employed the natural defini- L L3 R<0
tion that the defining surface is given by the position of the ﬁ)’g 4 @

rod ends at closest approach. But already for hard spheres, or — = (5)
for rods of finite thickness, there are at least two possible E

“natural” definitions (see, e.g., Figs. 1 and 14 in Rg18]). 4’

The surface tensiony in the ideal gas limit is obtained
from Eqgs.(44) and(48) by neglecting the interaction contri-
butions and by inserting the ideal profilé§(r,w) from Ap-
pendix B. This results in

Po
R>0

and

L3
+0(R™?), R<O

BYS 126R2
Bvs —= (52)

7

1 2 1 2

p—=—2J drr [1—2a0(r)]=—2f drr2[1—Xmadr)] Po L R>0

0 R R 2 .
(49

We have confirmed these resulésalytically for the sphere,

for a sphereg(with integration limits forRs0 as described numerically for the cylinderby using Egs.(49) and (50).
above and The most interesting aspect of these findings is that the sur-
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038 1 R/L<-5 sph 0.38
-------- R/L=-5,cyl
036 s R/L=°° .................... 036
—— RIL=B oyl T
0.34 it 0.34
3 — R/L =5, sph P e S 3
& 032 & o032
& &
0.3 0.3
0.28 0.28
0.26 ideal limit 0.26
0.24
0 0.5 1 1.5 2 25 3 35 4 -0.2 -0.1 0 0.1 0.2 0.3
P’y L/R
FIG. 7. Density dependence of the surface tension for different (b) cylinder
wall geometries and curvatures. In the ideal lifBig/p,L takes on 034 1T T — eyiince
the density-independent values 0.25 fdR%/0 (cylinders, spheres, 1 TveemTmmoe
and planar wa)l and 0.24920.2497% for a sphergcylinder with os2 1. =
R/L=—5. The differences between these three values are not vis-_, S S
ible on the scale of the figure. % 0.3 — =3
(=N *
........ p*p = 2
face tension is not analytical atR# 0, which may lead to 028 1 --- pf=1
unexpected behavior of membranes immersed in colloidal - =0
rod suspensions. 0.26
We have determined the surface tension in the presence ¢
the interparticle interactions for a series of bulk densities and 0.2 0.1 0 0.1 0.2 0.3

radii. The results are shown in Fig. 7 as a functiorpgfor

fixed Rand in Fig. 8 as a function d® for fixed p,, . For each

data point, four(spheresor three(cylinders numerical cal- FIG. 8. Curvature dependence of the surface tension(doa

culations with different values of the cutoff,,, were per- sphere andb) a cylinder at various densities. In the limit of non-

formed. The results were extrapolatedl .= using a fit  interacting rods §,=0) there is a slight decrease pffor negative

function linear or quadratic in . The differences be- curvature, which is hardly visible on this scale. Taking into account

tweeen the values at the largdsk, and the extrapolation the interparticle interactions leads to a substantial (_anhancement of

become considerable (8v)/(ppL)=0.02] at large densi- the curvature dependence alreadyp%@r: 1. We have interpolated

ties. From comparison of the results obtained by quadratiémomhly between the seven data points calculated for each curve.

and linear extrapolation, we estimate the erroBof/ (ppL)

to be 0.01 forpj =4 but only 0.001 forp} <2. Finally we . ) .

have interpolated smoothly between the 13 data points taker O the slightR dependence fdR<0 is hardly visible on the

for each radius. In the case of a cylinder at the highest derscale of Fig. 8. On the other hand, for densities of the order

sity p =3, the result obtained separately for the special cas@f 1 in reduced units the dependenceris dominated by a

of a planar wall lies slightlyby 0.003 in the units used here €M linear in 1R that is absent in the ideal limit. The de-

above the almost linear curve through the other points. A_pendenge oR becqmes stronger and_ less linear with increas-

possible explanation for this observation is that at the planai?d density, especially for the spherical case. _

wall a uniaxial orientational distribution has been assumed Due to the limited number of radii for which calculations

while the actual equilibrium profile might exhibit a small Were performed, we are not able to decide whether the small

spontaneous biaxiality as found at the cylindrical walls.discontinuity of the second derivative o{1/R) at 1R=0

Therefore, the planar wall result has not been used for ththat occurs in the ideal limit persists also at finite bulk den-

interpolation scheme in this case. sities. However, our data do not preclude this possibility. It is
Figure 7 shows the surface tension divided by the densitf@mmonly assumed that the surface free energy density for a

to allow for a better comparison with the ideal rod resultsgeneral surface with principal curvaturefi/and 1R, has

that predict a density-independent constant for this ratio. Ifhe Helfrich form[19]

all cases the interaction significantly increases this quantity,

by up to SQ% for the interr_nediate densingfz. In the (LR, 1Ry = yP + 2k E(iJri + -

upper density range saturation or the formation of a maxi- 2\R; Ry RiR,

mum are observed. The results for a planar wall are in good (53

agreement with those obtained by Mabal. [11], who ef- _

fectively used the same theory but a different numericawith the stiffness coefficients and « and the spontaneous

method. For almost all densities the surface tension is highegurvaturec,. Inter alia, this form predicts that the contribu-

for negative than for positive curvature, in contrast to thetion to y(1/R) linear in 1R for a sphere is twice that for a

behavior atp,—0. In the latter casey is constant forR  cylinder. From our numerical results we found that this rela-

L/R

2

—Cy +...
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tion is approximately fulfilled at low densities, but there are
substantial deviations from it at higher densities. Moreover, 65
the Helfrich expression cannot be applicable for all signs of
the curvatures already in the ideal limit due to the aforemen-
tioned nonanalyticity ofyS(1/R) and y¢(1/R).

We conclude that for phenomena for which the curvature \ P
dependence of the surface tension matters, the noninteracting A
approximation is qualitatively wrong already at relatively O 2 i
low densitiesicompared to the transition density to the nem-
atic phasgand at any fixed curvature it produces rather large
guantitative errors in the absolute valueyf

(a)

>

(b)

b33

V. SUMMARY
b
For an isotropic fluid of needlelike hard spherocylinders 2 R

of lengthL near hard spherical or cylindrical walls, we have I D b *
obtained the following main results. M\L 12
(i) Due to the interparticle interactions, the probability of
finding a particle with a given orientation is strongly in- ) _ _
creased close to the wall when compared to the bulk fluid. At FIG. 9. Geometry of two overlapping rods in the liniX/L
a given distance of the center of mass from the wall, ori- —0. Only one-half of each rod is shown. Their centers lie onzthe
entations for which one end of the rod touches the wall aréxis and have a distance In order to overlap, both rods must lie
most favorablesee Fig. 2 approximately in the same plaria). Part(b) show:% a vertical pro-
(i) Since the range of accessible orientations decreaségction from which the allowed azimuthal rangdep;,=2D/p can
when the particle approaches the wall, the orientationaII)Pe determined. Rod 2 is drawn in the two positions for which it just
averaged density vanishes for0. It exhibits a cusp ax ~ touchesrod 1.
=L/2 where the rods lose contact with the surféemy. 3).
(iii) The parallel alignment favored by the surface decays . _ ) )
more slowly when the bulk density is increas@dg. 4) and where the. coefficientk,, relatmg the spher!cal harmonics to
is stronger if the wall curves towards the fluid instead ofth® @ssociated Legendre functioRg, are given by
away from it(Fig. 5).
(iv) A cylindrical wall curving towards the fluid induces
biaxial orientational order with preferential alignment paral- Kim=(—1)"
lel to the cylinder axis. With increasing bulk density a nem-
atic wetting layer develops in this caésee Fig. 6.
(v) The density and curvature dependences of the wall-
fluid surface tension are shown in Figs. 7 and 8. In contrast Kim=(=1)"Kim. (A2)
to the results for non-interacting particles given by E§4) 1
and(52) the surface tension decreases with increasing curv. P S 2 S ~
ture and exhibits a linear behavior around the plangr ”miat‘l‘herefore after the substltutlon$5—2(¢1+¢2) and ¢1,
which leads to a spontaneous curvature of a membrane away$,— ¢, the integral oveip, renders a factor 2. In Eq.

21+1 (I—m)!\¥?

47 (I+m)!

for m=0,

from a fluid of rodlike(colloidal) particles. (7) we now perform the integrations in the following order:
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APPENDIX A: DETERMINATION OF THE EXPANSION o imd
COEFFICIENTS OF THE MAYER FUNCTION X P m(C0SHp)e™ 12, (A3)

Equation(7) serves as the starting point which defines thej, the limit D/L—0, the two rods overlap only in a small

expansion coefficientst|l|2m(r). As far as the azimlAJthaI rangeA&blZ aroundfﬁlz:o or (})12: . approximately given
angles are concerned, the integrand depends onlypgn by A ¢41,=2D/p, wherep is the distance between the inter-
= (},2_ [ﬁl because section point and the line joining the centers of the rods, as
shown in Fig. 9. From this figure one easily derivps
. =r/(cot6,—cot6,); based on appropriately modified figures
Ym( 8, )=k P m(cosd)e Mm%, (A1) one finds that this expression is also vali®if> /2 or 6,
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1 with r’=r/L. As illustrated in Fig. 10, the following regions
W2 B in the (r’,x) plane must be distinguished:
05 A - (A) for 0<r’'<1/2 andr'sx<1: Xmn=x" andXmax
' & e 63" =1, (B) for 1/2<r'<1 andr’'sx<1: Xm,=x{* and
? < Xmax=X2"),  (C) for 1/2<r'<1/J2 and ry1—1/4r"2
x 9 3 <x=<r":  Xmin=x%7") and xpa=x{>"), (D) for O=<r’
r <1/2 and—1<x=<r'": Xmn=x%") andXma=1.
05 D For givenl andm the integration ovek, in Eq. (A4) can
: 8, be carried out analytically. In the remaining numerical inte-
gration special care must be taken fdr<1/2 due to the
9 square root singularity a¢;=1. All Coefficientsf|1|2m are of
0 0.5 102 1 the order ofD/L and vanish forr/L>1. They diverge for
r=r/L r/L—0, but they appear only in the produo‘t|l|2m(r) [see

FIG. 10. lllustration of the cases that must be distinguished forEqS'(ls)’ (16), and(19)] which is finite in this limit. For two

N finite values ofD/L the coefficients have been calcu-
the determination of the minimunmxg;,=cosé'®) and maximum 1lom

~in ) lated by Moore and McMullef7].
(Xmax=coséy™) value ofx, so that two rods overlap for givexy - . .
N . . A useful check of the numerical results is obtained from
=cos#, andr. The appropriate expressions #qQf;, andx . for the

regionsA, B, C, andD are given in the main text. In the unlabeled the observation that the excluded vo_Iun‘g;g(COSy) for fixed
region containing the inset, overlap is not possible. The inset show@nglej Y bgtween the part|cI3e axes is related to the'Mayer
an example from regioB where the end of rod 2 touches rod 1 at TUNCtION Via v e, (C0Sy)=—Jdr1,f(r1p, w1, ;) from which

the minimum angle and vice versa at the maximum angle. one derives

<m/2. Therefore it is sufficient to replace tléta_z integration fl d cosyP,(cosy)ve,COSYy)
by the factorA ¢4, to replace the integrand by its value at -t
#1,=0 or o, and to examine only the overlap of two infi-
nitely thin rods in thex-z plane. In integrations over the full

spatial angleso; we assign an intrinsic directionality to the
rods such that their “front ends” point into the direction

(61, ¢:) and their “rear end mtp .the dl.re.ct|on7(.— 012 nown result (see, e.g., Ref[2]) vecosy)=2DLsiny
—¢;). In order to calculatef,l,2m it is sufficient to integrate +0O(D2L) and thus provides a sum rule for the second mo-
over the configurations with overlap of the two front ends,ments of the expansion coefficients. Our numerical results
where necessarily;,~0. One can easily show by appropri- passed this check.
ate substitutions that the other three possibilities for overlap
yield exactly the same contribution to the total integral, so
that one finds APPENDIX B: DENSITY PROFILES

FOR NONINTERACTING RODS

2 °9)
:m% (—1)m+1f0 drr2f,,(r). (A6)

The left-hand side can easily be determined using the well-

D (1 .
fi,m(r)= —1677k|1mk|257f dx; Py m(X1) In the ideal limitp(r, ) adopts the constant valyg/4m
-1 for orientationsw that are allowed by the presence of the
« hard wall and vanishes otherwise. Thus it is sufficient to
maxF/L.X1)
XJ dX2P|2m(X2)(
Xmin(r/L,X1)

X1 X ) - ) . . )
— determine the limiting orientations for which the rod just
\/1—X§ \/1—X§ touches the wall. At a planar surface the maximum allowed
(A4) value for Xx=Cc0s80 iS Xna=22/L for z<L/2 while the rod
cannot touch the wall faz>L/2 so thatx,,,(z=L/2)=1. At
Here X, and Xa, denote the smallest and largest value ofall surfaces the minimum value afclearly is — . because
x,=cosf, for givenx,=cos#, andr/L for which the front of the head-tail symmetry. Thus in the following it is suffi-

halves of the rods overlap, as shown for an example in th&/€nt to consider positive.
inset of Fig. 10. They can be determined by tedious but
straightforward geometry, which yields two basic formulas
for the x value at touching, depending on whether the end of

1. Outside a sphere

rod 1 touches rod 2 or vice versa: As illustrated in Fig. 11a), there are two different ways in
which a rod can touch the outside of a sphere: when the rod
or' —x is sufficiently far from the surface, its end touches the wall
D pr )= . g
X (r',x)= — upon rotation, whereas when it is close to the wall at contact
Vi=2r'x+r it will touch it tangentially. The crossover between these two

o, , . regions takes place at,=\R?+L?%4 and straightforward
X2 x)=2r"(1=x%) =x\1-4r'(1-x?) (A5)  geometrical reasoning yields
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0.75

coso

0.5

0.25

R/L r,/L 1.5 1.6 1.7 R/L+1/2
r/L

FIG. 12. In calculating the accessible orientational space for a
rod outside a cylinder, different expressions, presented in the main
(b) text, apply in the regions labele] B, C, andD for the maximum
2 azimuthal anglep. at given values ok=cosé andr. The figure
2y corresponds to the cag¥L =1.3, but its topology is the same for
all radii. Only for configurations corresponding to regbrdoes the
*p rod touch the cylinder tangentially. For larger valuesRods actu-
ally used in the calculations presented abayes closer toR and
IR the regionsC andD are much smaller.

normal. Thus here we have to determine the rahgeof

allowed values ofp for fixed r and co9. If the rod touches

the cylinder at the anglé. [ 0,7/2], then due to symmetry

one has 1,=[0,¢]U[7— ¢, m+ dJU[2T7— ¢, 2m].

%p] 1 With the help of Fig. 11b) one finds for contact between the
rod end and the surface

2\R?—(r —L/2 cosh)?

COSh.= - , (B3)
FIG. 11. Geometries for the determination of the allowed orien- L siné
tations at curved wallga) Outside a spherical wall the rod touches
the wall with its end ifr >r (rod 1), but tangentially ifr <r. (rod ~ whereas for tangential contact one has
2). Inside a sphere only end contact can ocgod 3). From this
figure Egs.(B1) and (B2) can be derived(b) Projection of the R2
corresponding problem for a cylindrical wall onto the plane perpen- COS¢.=Cot ) ———. (B4)
dicular to the cylinder axis. Equatioit83) and(B4) can be derived Vre=R
usingxp=(L/2)sinfcos¢, andzp= (L/2)cosé.
n/2
1, r=R+L/2 14 1! — outside sphere
aol inside sphere
Xmax= (LY4=RP+r2)/(rL), resr<R+L/2 12 ‘,' --- outside cylinder
2 2 [ —— inside cylinder
Vre=Re/r, R<r=r,. (B1) 1 i 4
< 08 Foa
) accessible i/ % inaccessible
2. Inside a sphere 0.6 [
In this case there is a minimum distance= VR?—L%/4 0.4 [
from the surface beyond which all orientations are forbidden. 0.2
In the accessible regidiR| —L/2<r<r. one finds[see Fig. 0
11(a)] 0 0.2 0.4 0.6 0.8 1
R2—L2/4—r? cosé
Xmax:T- (B2

FIG. 13. Accessible orientational space for a rod near walls of
different geometries at a fixed distanz=0.2 and radiugR|/L
3. Outside a cylinder =3. Spatial angles to the left of the lines are allowed; those to the

) ] . - _right are forbidden by the presence of the wall. There is no depen-
For a cylinder the profile depends in addition on the azi-dence on the azimuthal angde for spherical walls. For a cylinder

muthal anglep which we always measure from the axis thatat ¢=0 (¢=/2) the wall is effectively sphericaplanaj, which
is perpendicular to both the cylinder axis and the surfacexplains the common end points of the various lines.
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By determining the transitions between these two cases ds the region of interestR| — L/2<r<|R| we obtain the fol-

well as those to the rangég=(J andl ,=[0,27], we are
led to distinguish the following case¢see Fig. 12
(A) Rs<r=R+L/2 and O0<cosf<2(r—R)/L: cosg¢,
=0, (B) r.=yJR*>+L?%4<r<R+L/2 and 2¢(-R)/L
< cos#<(L%4—R?>+r?)/(Lr): cos¢. as given by Eq.
(B3), (C) Rsr=r, and 2¢—R)/L<cosf<2(?
—R?)/(Lr): cosg¢, as given by Eq(B3), (D) R<r=r,
and 2¢2—R?)/(Lr)<cosé<\r>—R?r: cos¢, as given
by Eq. (B4).

In the remaining region withiR<r<R+L/2 all ¢ val-
ues are forbidden, while obviously foe=R+L/2 all orien-
tations are allowed.

4. Inside a cylinder

In contrast to the previous case, here the accesstble

lowing: (A) for cosé=2(r—|R|)/L: cos¢p.=n/2, (B) for
r=r, and co¥<2(r—|R)/L or for r<r. and R?>—L%/4
—r?)/(Lr)<cosé<2(r—|R))/L:

2\R?—(r +L/2 cosb)?
L sind ’

COS¢h.= (BS)

(C) for r<r. and co#<(R2—L%4—r?)/(Lr): cos¢.=0.

In Fig. 13 we compare the accessible orientational space
in these four cases for the same radi®&/L=3 and the
same distance from the surfaadlL=0.2. Naturally this
space is largest outside a sphere and smallest inside a sphere.
One also notices that for a cylinder thg dependence is
actually restricted to a rather small range of values foré&cos
while for most polar angle® either none or all azimuthal

range is centered around the cylinder axis, i.e., it has thangles are allowed. We emphasize again that the forbidden

form | y=[ ¢, m— P JU[ 7+ ¢, 2m— ¢:]. Since tangential

regions are also strictly forbidden for interacting rods whose

contact is not possible, the classification is a little bit simpler.profile is no longer constant within the allowed region.
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